Environmental Engineering Reference
In-Depth Information
Fujita Y, Redden GD, Ingram JC, Cortez MM, Ferris FG, Smith RW (2004) Strontium
incorporation
into
calcite
generated
by
bacterial
ureolysis.
Geochim
Cosmochim
Acta
68(15):3261-3270
Gaylarde C, Ribas SM, Warscheid T (2003) Microbial impact on building materials: an overview.
Mater Struct 36(3):342-352
Ghosh P, Mandal S, Chattopadhyay B, Pal S (2005) Use of microorganism to improve the
strength of cement mortar. Cem Concr Res 35:1980-1983
Ghosh P, Biswas M, Chattopadhyay B, Mandal S (2009) Microbial activity on the microstructure
of bacteria modified mortar. Cem Concr Compos 31:93-98
Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new methodbfor controlling leaching
through permeable channels. Chemosphere 30(4):695-705
Grabiec A, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by
calcium carbonate biodeposition. Constr Build Mater 34:145-150
Guadalupe M, Sierra-Beltran, Jonkers HM, Schlangen E (2014) Characterization of sustainable
bio-based
mortar
for
concrete
repair.
Constr
Build
Mater.
http://dx.doi.org/10.1016/j.
conbuildmat.2014.01.012
Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate
precipitation. Rev Environ Sci Biotechnol 1:3-7
Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003a) Strainspecific ureolytic
microbial calcium carbonate precipitation. Appl Environ Microbiol 69(8):4901-4909
Hammes F, Seka A, de Knijf S, Verstraete W (2003b) A novel approach to calcium removal from
calcium-rich industrial wastewater. Water Res 37(3):699-704
Jiang W, Saxena A, Bongkeun S, Ward BB, Beveridge TJ, Myneni CB (2004) Elucidation of
functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared
spectroscopy. Langmuir 20:11433-11442
Jonkers H (2007) Self healing concrete: a biological approach. In: van der Zwaag S (ed) Self
healing materials: an alternative approach to 20 centuries of materials science. Springer,
Netherlands, pp 195-204
Jonkers HM, Thijssen A, Muyzer G (2010) Application of bacteria as self-healing agent for the
development of sustainable concrete. Ecol Eng 36(2):230-235
Kantzas A, Ferris FG, Jha KN, Mourits FM (1992) A novelmethod of sand consolidation through
bacteriogenic mineral plugging. In: Proceedings of CIM annual technical conference, Calgary
Kim HK, Park SJ, Han JI, Lee HK (2013) Microbially mediated calcium carbonate precipitation
on normal and lightweight concrete. Constr Build Mater 38:1073-1082
Kucharski ES, Cord-Ruwisch R, Whiffin V, Al-Thawadi SMJ (2006) Microbial biocementation.
World intellectual property organization, WO2006/066326 A1
Lappin-Scott HM, Cusack F, Costerton JW (1988) Nutrient resuscitation and growth of starved
cells in sandstone cores: a novel approach to enhanced oil recovery. Appl Environ Microbiol
54(6):1373-1382
Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of
bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and
historic patrimony. Sediment Geol 126(1-4):25-34
Li PH, Jin B (2012) Healing of cracked concrete by Sporosarcina pasteurii mediated carbonate
deposition. Appl Mech Mater 164:103-106
Li P, Qu W (2012) Microbial carbonate mineralization as an improvement method for durability
of concrete structures. Adv Mater Res 365:280-286
Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationship between bacteria and mineral
surfaces. Rev Mineral 35:123-159
MacLeod A, Lappin-Scott HM, Costerton JW (1988) Plugging of a model rock system by using
starved bacteria. Appl Environ Microbiol 54:1365-1372
McConnaughey
TA,
Whelan
JF
(1997)
Calcification
generates
protons
for
nutrient
and
bicarbonate uptake. Earth Sci Rev 42(1-2):95-117
Search WWH ::




Custom Search