Environmental Engineering Reference
In-Depth Information
Ramoelo A, Skidmore AK, Schlerf M, Mathieu R, Heitk¨nig IMA (2011) Water-removed spectra
increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus
concentrations. ISPRS J Photogramm Remote Sens 66:408-417
Ria˜o D, Vaughan P, Chuvieco E, Zarco-Tejada PJ, Ustin SL (2005) Estimation of fuel moisture
content by inversion of radiative transfer models to simulate equivalent water thickness and dry
matter content: analysis at leaf and canopy level. IEEE Trans Geosci Remote Sens 43:819-826
Riggs GA, Running SW (1991) Detection of canopy water stress in conifers using the Airborne
Imaging Spectrometer. Remote Sens Environ 35:51-68
Roberts DA, Brown K, Green R, Ustin SL, Hinckley T (1998) Investigating the relationship
between liquid water and leaf area in clonal populus. In: Summaries of the 7th annual JPL earth
science workshop. Jet Propulsion Laboratory, Pasadena
Roberts DA, Dennison PE, Peterson S, Sweeny S, Rechel J (2006) Evaluation of Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer
(MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in
southern California. J Geophys Res. doi: 10.1029/2005JG000113
Roberts DA, Ustin SL, Ogenjemiyo S, Greenberg J, Dobrowski SZ, Chen J, Hinckley TM (2004)
Spectral and structural measures of northwest forest vegetation at leaf to landscape scales.
Ecosystems 7:545-562
Rodr´guez-P´rez JR, Ria˜o D, Carlisle E, Ustin S, Smart DR (2007) Evaluation of hyperspectral
reflectance indexes to detect grapevine water status in vineyards. Am J Enol Viticult
58:302-317
Rollins MG (2009) LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel
assessment. Int J Wildland Fire 18:235-249
Rollins MG, Keane RE, Parsons RA (2004) Mapping fuels and fire regimes using remote sensing,
ecosystem simulation, and gradient modeling. Ecol Appl 14:75-95
Romero A, Aguado I, Yebra M (2012) Estimation of dry matter content in leaves using normalized
indexes and PROSPECT model inversions. Int J Remote Sens 33:396-414
Rouse JW, Haas RW, Schell JA, Deering DH, Harlan JC (1974) Monitoring the vernal advance-
ment and retrogradation (greenwave effect) of natural vegetation. NASA GSFC, Greenbelt
Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Sch¨ ler G (2010) Retrieval of
chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy.
Int J Appl Earth Observ Geoinform 12:17-26
Schwarz MD, Reed BC, White MA (2002) Assessing satellite-derived start-of-season measures in
the conterminous USA. Int J Clim 22:1793-1805
Serrano L, Ustin SL, Roberts DA, Gamon JA, Pe˜uelas J (2000) Deriving water content of
chaparral vegetation from AVIRIS data. Remote Sens Environ 74:570-581
Shipley B, Vu TT (2002) Dry matter content as a measure of dry matter concentration in plants and
their parts. New Phytol 153:359-364
Sims DA, Gamon JA (2003) Estimation of vegetation water content and photosynthetic tissue area
from spectral reflectance: a comparison of indices based on liquid water and chlorophyll
absorption features. Remote Sens Environ 84:526-537
Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water
conditions in two co-occurring conifer species: pinus edulis and Juniperus monosperma.
Remote Sens Environ 96:108-118
Trombetti M, Ria˜o D, Rubio MA, Cheng YB, Ustin SL (2008) Multitemporal vegetation canopy
water content retrieval using artificial neural networks for the USA. Remote Sens Environ
112:203-215
Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sens Environ 8:127-150
Tucker CJ (1980) Remote sensing of leaf water content in the near infrared. Remote Sens Environ
10:23-32
Search WWH ::




Custom Search