Environmental Engineering Reference
In-Depth Information
References
Bankert RL, Tag PM (2002) An automated method to estimate tropical cyclone intensity using
SSM/I imagery. J Appl Meteorol 41:461-472
Bessho K, DeMaria M, Knaff JA (2006) Tropical cyclone wind retrievals from the advanced
microwave sounder unit (AMSU): Application to surface wind analysis. J Appl Meteorol
45:399-415
Brueske KF, Velden CS (2003) Satellite-based tropical cyclone intensity estimation using the
NOAA-KLM series advanced microwave sounding unit (AMSU). Mon Weather Rev
131:687-697
Demuth JL, DeMaria M, Knaff JA, Vonder Haar TH (2004) Validation of an advanced microwave
sounding unit tropical cyclone intensity and size estimation algorithm. J Appl Meteorol
43:282-296
Demuth JL, DeMaria M, Knaff JA (2006) Improvement of advanced microwave sounding unit
tropical cyclone intensity and size estimation algorithms. J Appl Meteorol Climatol
45:1573-1581
Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon
Weather Rev 103:420-430
Dvorak VF (1984) Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep.
NESDIS11, p 47 [Available from NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20233.]
Dworak R, Key JR (2009) Twenty years of polar winds from AVHRR: validation and comparison
with ERA-40. J Appl Meteorol Climatol 48:24-40
Emanuel K (2007) Environmental factors affecting tropical cyclone power dissipation. J Climate
20:5497-5509
Hawkins HF, Imbembo SM (1976) The structure of a small, intense Hurricane—Inez 1966. Mon
Weather Rev 104:418-442
Herndon DC, et al (2010) The CIMSS satellite consensus (SATCON) tropical cyclone intensity
algorithm. 29th conf. on Hurricanes and Tropical Meteorology, Tuscon, Amer. Meteor. Soc.,
4d.4.
[Available
online
at
http://ams.confex.con/ams/29Hurricanes/techprogram/
paper_167959.htm . ]
Hubert LF, Timchalk A (1969) Estimating hurricane wind speeds from satellite pictures. Mon
Weather Rev 97:382-383
Kidder SQ, Gray WM, Vonder Haar TH (1978) Tropical cyclone outer surface winds derived from
satellite microwave sounder data. Mon Weather Rev 108:144-152
Kidder SQ et al (2000) Satellite analysis of tropical cyclones using the advanced microwave
sounding unit (AMSU). Bull Am Meteorol Soc 83:1241-1259
Knaff JA, Brown DP, Courtney J, Gallina GM, Beven JL II (2010) An evaluation of Dvorak
technique-based tropical cyclone intensity estimates. Weather Forecast 25:1362-1379
Knutson TR, McBride J, Chan J, Emanuel KA, Holland G, Landsea C, Held IM, Kossin J, Srivastava
AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157-163
Kossin JP, Camargo SJ, Sitkowski M (2010) Climate modulation of North Atlantic hurricane
tracks. Am Meteorol Soc J Clim 23:3057-3076
Landsea CW, Vecchi GA, Bengtsson L, Knutson TR (2010) Impact of duration thresholds on
Atlantic tropical cyclone counts. J Climate 23:2508-2519
O'Neill LW, Chelton DB, Esbensen SK (2010) The effects of SST-induced surface wind speed and
direction on gradients on mid-latitude surface vorticity and divergence. J Climate 23:255-281
Olander T, Velden CS (2007) The advanced Dvorak technique (ADT) - continued development of
an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite
imagery. Weather Forecast 22:287-298
Olander T, Velden CS, Kossin J (2004) The advanced objective Dvorak technique (AODT): latest
upgrades and future directions. In: Proceedings 26th AMS hurricane and tropical meteorology
conference, Miami, FL, Amer Meteor Soc P1.19
Search WWH ::




Custom Search