Image Processing Reference
In-Depth Information
[MAT 78] M ATHERON G., Estimer et choisir - Essai sur la pratique des probabilits, Report,
Ecole Nationale Supérieure des Mines de Paris, Geostatistics Center, Fontainebleau, France,
[NEA 92] N EAPOLITAN R.E., “A Survey of Uncertain and Approximate Inference”, in L.
Z ADEH and J. K APRZYK (ed.) Fuzzy Logic for the Management of Uncertainty , p. 55-82,
J. Wiley, New York, 1992.
[PAR 95] P ARIS J.B., The Uncertain Reasoner's Companion, a Mathematical Perspective ,
Cambridge University Press, 1995.
[SHA 59] S HANNON C.E., W EAVER W., The Mathematical Theory of Communication , Uni-
versity of Illinois Press, Urbana, USA, 1959.
[SHA 76] S HAFER G., A Mathematical Theory of Evidence , Princeton University Press, 1976.
[SHA 78] S HAFER G., “Non-Additive Probabilities in the Work of Bernoulli and Lambert”,
Archive for History of Exact Sciences , vol. 19, p. 309-370, 1978.
[SHA 86] S HAFER G., “The Combination of Evidence”, International Journal of Intelligent
Systems , vol. 1, p. 155-179, 1986.
[SHO 75]
Medicine”, Mathematical Biosciences , vol. 23, p. 351-379, 1975.
[SOM 89] S OMBÉ L., Raisonnements sur des informations incomplètes en intelligence artifi-
cielle , Teknea, Marseille, 1989.
[STI 82] S TIGLER S.M., “Thomas Bayes's Bayesian Inference”, J. Roy. Stat. (A) , vol. 145,
p. 250-258, 1982.
[STI 83] S TIGLER S.M., “Who Discovered Bayes's Theorem?”, The American Statistician ,
vol. 37, no. 4, p. 290-296, 1983.
[TRI 72]
T RIBUS M., Rational, Decriptions, Decisions and Designs ,
Pergamon Press Inc.,
[ZAD 65] Z ADEH L.A., “Fuzzy Sets”, Information and Control , vol. 8, p. 338-353, 1965.
[ZAD 78] Z ADEH L.A., “Fuzzy Sets as a Basis for a Theory of Possibility”, Fuzzy Sets and
Systems , vol. 1, p. 3-28, 1978.
Search WWH ::

Custom Search