Image Processing Reference
In-Depth Information
De Finetti adopts a subjectivist philosophy, in the sense that he considers subjec-
tivist elements, far from having to be eliminated as suggested by objectivists in order
to render the concept of probability more “scientific”, are essential and inherent to the
concept of probability. This coincides with the point of view according to which prob-
ability expresses an individual's opinion, and only has significance with regard to that
individual, as opposed to the objectivist perspective which considers that probability
exists independently of individuals and is a property of the physical world.
A.4. Bibliography
[ACZ 48] A CZÉL J., “Sur les opérations définies pour nombres réels”, Bull. Soc. Math. Franç. ,
vol. 76, p. 59-64, 1948.
[ACZ 66]
A CZÉL J., Lectures on Functional Equations and Their Applications ,
Press, New York, 1966.
[BLO 96] B LOCH I., “Incertitude, imprécision et additivité en fusion de données: point de vue
historique”, Traitement du Signal , vol. 13, no. 4, p. 267-288, 1996.
[COX 46]
C OX R.T., “Probability, Frequency and Reasonable Expectation”,
Journal of
Physics , vol. 14, no. 1, p. 115-137, 1946.
[DEM 93] D EMOMENT G., Probabilités, modélisation des incertitudes, inférence logique, et
traitement des données expérimentales, Report, Paris-Sud University course, Orsay, France,
[DUB 88] D UBOIS D., P RADE H., Possibility Theory , Plenum Press, New York, 1988.
[FEL 66] F ELLER W., An Introduction to Probability Theory and its Applications , Wiley, New
York, 1966.
[FIN 37] DE F INETTI B., “La prévision: ses lois logiques, ses sources subjectives”, Annales
de l'Institut Henri Poincaré , vol. 7, no. 1, p. 1-68, 1937.
[GOO 59] G OOD I.J., “Kinds of Probability”, Science , vol. 129, no. 3347, p. 443-447, 1959.
[HOL 62] H OLLAND J.D., “The Reverend Thomas Bayes, F.R.S. (1702-61)”, J. Roy. Stat.
Soc. (A) , vol. 125, p. 451-461, 1962.
[HOR 86] H ORVITZ E.J., H ECKERMAN D.E., L ANGLOTZ C.P., “A Framework for Compar-
ing Alternative Formalisms for Plausible Reasoning”, National Conference on Artificial
Intelligence , p. 210-214, 1986.
[JAY 57] J AYNES E.T., “Information Theory and Statistical Mechanics”, Physical Review ,
vol. 106, no. 4, p. 620-630, 1957.
[JEF 61]
J EFFREYS R., Theory of Probability , Oxford University Press, 1961.
[KEM 42] K EMBLE E.C., “Is the Frequency Theory of Probability Adequate for All Scientific
Purposes?”, Am. J. Physics , vol. 10, p. 6-16, 1942.
[KEY 29]
K EYNES J.M., A Treatise on Probability , Macmillan, London, 1929.
Search WWH ::

Custom Search