Image Processing Reference
In-Depth Information
Chapter 12
Now that we have been through this overview of the major numerical fusion meth-
ods and of their use in signal and image processing and in robotics, we will sum up a
few achievements and conclusions, as well as a few issues that still pose difficulties.
12.1. A few achievements
The previous chapters have shown that a wide variety of numerical techniques
are used for the fusion of imprecise and uncertain information. This diversity is the
result of the diversity of the tasks themselves that contribute to the decision in a multi-
source information system. Probabilistic methods remain the most commonly used,
mostly because they have led to the development of operational tools and great know-
how, which is the result of a considerable amount of practice. On the decision level
these tools turn out to be particularly efficient, whereas for modeling, some aspects
remain limited or even disputed. Fuzzy set theory relies on a type of modeling close
to intuition. In the fusion applications mentioned here, there is still little formalism
or development in the decision phase. On the other hand, the combination phase is
very rich and allows knowledge of any type to be included. Belief function theory
offers the most powerful modeling tools, making it possible to simply and efficiently
include knowledge, imprecision and uncertainty. Combination, as it is used in signal
and image processing, is limited to the conjunctive mode.
In numerical fusion for signal and image processing, the efforts of the past years
have led to a better understanding of the different theories taken from fields such as
Search WWH ::

Custom Search