Image Processing Reference
In-Depth Information
[MIL 01] M
ILISAVLJEVI C
N., B
LOCH
I., “A Two-Level Approach for Modeling and Fusion
of Humanitarian Mine Detection Sensors within the Belief Function Framework”,
Applied
Stochastic Models and Data Analysis
, vol. 2, Compiègne, p. 743-748, 2001.
[NEA 92] N
EAPOLITAN
R.E., “A Survey of Uncertain and Approximate Inference”, in L.
Z
ADEH
and J. K
APRZYK
(ed.)
Fuzzy Logic for the Management of Uncertainty
, p. 55-82,
J. Wiley, New York, 1992.
[PIN 95] P
INZ
A., P
RANTL
M., “Active Fusion for Remote Sensing Image Understanding”,
European Symposium on Satellite Remote Sensing, Paris
, vol. 2579, EOS/SPIE, p. 67-77,
1995.
[QUI 89] Q
UINIO
P., Representation and Accumulation of Uncertain Informations: A Theo-
retical Comparison of Probabilistic and some Non-Probabilistic Formalisms,
Report, Ito
Lab., Tohoku University, 1989.
[QUI 91] Q
UINIO
P. , M
ATSUYAMA
T., “Random Closed Sets: A Unified Approach to the
Representation of Imprecision and Uncertainty”, in R. K
RUSE
and P. S
IEGEL
(ed.)
Sym-
bolic and Quantitative Approaches to Uncertainty, ECSQARU
, Marseille, Springer Verlag,
p. 282-286, 1991.
[RAS 90] R
ASOULIAN
H., T
HOMPSON
W.E., K
AZDA
L.F., P
ARRA
-L
OERA
R., “Application
of the Mathematical Theory of Evidence to the Image Cueing and Image Segmentation
Problem”,
SPIE Signal and Image Processing Systems Performance Evaluation
, vol. 1310,
p. 199-206, 1990.
[ROM 99] R
OMBAUT
M., “Fusion de données images segmentées à l'aide du formalisme de
Dempster-Shafer”,
GRETSI'99
, Vannes, France, p. 655-658, 1999.
[SCH 93] S
CHUBERT
J., “On Nonspecific Evidence”,
International Journal of Intelligent Sys-
tems
, vol. 8, p. 711-725, 1993.
[SHA 76] S
HAFER
G.,
A Mathematical Theory of Evidence
, Princeton University Press, 1976.
[SME 90a] S
METS
P., “The Combination of Evidence in the Transferable Belief Model”,
IEEE
Transactions on Pattern Analysis and Machine Intelligence
, vol. 12, no. 5, p. 447-458, 1990.
[SME 90b] S
METS
P., “Constructing the Pignistic Probability Function in a Context of Uncer-
tainty”,
Uncertainty in Artificial Intelligence
, vol. 5, p. 29-39, 1990.
[SME 93] S
METS
P., “Belief Functions: The Disjunctive Rule of Combination and the Gener-
alized Bayesian Theorem”,
International Journal of Approximate Reasoning
, vol. 9, p. 1-35,
1993.
[TUP 99] T
UPIN
F., B
LOCH
I., M
AÎTRE
H., “A First Step Towards Automatic Interpretation
of SAR Images using Evidential Fusion of Several Structure Detectors”,
IEEE Transactions
on Geoscience and Remote Sensing
, vol. 37, no. 3, p. 1327-1343, 1999.
[YAG 87] Y
AGER
R.R., “On the Dempster-Shafer Framework and New Combination Rules”,
Information Science
, vol. 41, p. 93-137, 1987.
[ZAH 92] Z
AHZAH
E., Contribution à la représentation des connaissances et à leur utilisation
pour l'interprétation automatique des images satellites, PhD Thesis, Paul Sabatier Univer-
sity, Toulouse, 1992.
Search WWH ::

Custom Search