Information Technology Reference
In-Depth Information
m
= F L +
F drag , R
¨
z
F R
F drag , L
θ = F R
F drag , R r
(6.23)
1
2 mr 2
F L +
F drag , L
where:
F drag , L =
k drag v L |
v L |
F drag , R =
k drag v R |
v R |
(6.24)
r θ
r θ
v L
z
v R
z
+
with k drag =
11 kg/m being the drag coefficient in the normal operating conditions,
z the total covered distance,
θ
the angular
velocity. The system can be controlled using the available control inputs F L and F R ,
that are the forces acting on the left and the right wheel, which have velocities v L
and v r , respectively.
By considering the state vector x
z the linear velocity,
˙
θ
the yaw angle and
= F L F R T ,
and embedding the nonlinearities in the parameters, ( 6.23 ) can be put in the following
form:
= z
θ θ T , the input vector u
˙
z
=
+
x 1 (
˙
t
)
0
1
0
0
x 1 (
t
)
B u 1 (
x 2 (
˙
t
)
0 a 22 (
x 2 ,
x 4 )
0 a 24 (
x 2 ,
x 4 )
x 2 (
t
)
t
)
(6.25)
x 3 (
˙
t
)
0
0
0
1
x 3 (
t
)
u 2 (
t
)
x 4 (
˙
t
)
0 a 42 (
x 2 ,
x 4 )
0 a 44 (
x 2 ,
x 4 )
x 4 (
t
)
with:
01
T
/
m 0
2
/(
mr
)
B
=
(6.26)
01
/
m 02
/(
mr
)
2 k drag x 2 /
m 2 ≥ |
rx 4 |
2 rk drag x 4 /
m
rx 4 <
x 2 <
rx 4
a 22 (
x 2 ,
x 4 ) =
(6.27)
2 rk drag x 4 /
mrx 4 <
x 2 <
rx 4
2 k drag x 2 /
mx 2 ≤ |
rx 4 |
2 k drag r 2 x 4 /
m 2 ≥ |
rx 4 |
2 rk drag x 2 /
m
rx 4 <
x 2 <
rx 4
a 24 (
x 2 ,
x 4 ) =
(6.28)
2 rk drag x 2 /
mrx 4 <
x 2 <
rx 4
2 k drag r 2 x 4 /
m 2 ≤ |
rx 4 |
4 k drag x 4 /
mx 2 ≥ |
rx 4 |
4 k drag x 2 /(
mr
)
rx 4 <
x 2 <
rx 4
a 42 (
x 2 ,
x 4 ) =
(6.29)
4 k drag x 2 /(
mr
)
rx 4 <
x 2 <
rx 4
4 k drag x 4 /
mx 2 ≤ |
rx 4 |
4 k drag x 2 /
mx 2 ≥ |
rx 4 |
4 rk drag x 4 /
m
rx 4 <
x 2 <
rx 4
a 44 (
x 2 ,
x 4 ) =
(6.30)
4 rk drag x 4 /
mrx 4 <
x 2 <
rx 4
4 k drag x 2 /
mx 2 ≤ |
rx 4 |
Search WWH ::




Custom Search