Information Technology Reference
In-Depth Information
Acknowledgments Research in this area is supported by Spanish government: projects DPI2011-
27845-C02-01, DPI2011-27845-C02-02.
References
Ariño, C. V. & Sala, A. (2007). Relaxed lmi conditions for closed-loop fuzzy systems with tensor-
product structure. Engineering Applications of Artificial Intelligence20 (8), 1036-1046, doi: 10.
1016/j.engappai.2007.02.011 .
Bertsekas, D. P. (1999). Nonlinear programming , (2nd ed.). Belmont: Athena Scientific. ISBN
1886529000.
Blekherman, G. (2006). There are significantly more nonegative polynomials than sums of squares.
Israel Journal of Mathematics , 153 (1), 355-380.
Boyd, S., ElGhaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system
and control theory . Philadelphia, USA: SIAM.
Chesi, G. (2009). Estimating the domain of attraction for non-polynomial systems via lmi optimiza-
tions. Automatica , 45 (6), 1536-1541. doi : 10.1016/j.automatica.2009.02.011 .
Haddad, W. M., & Chellaboina, V. (2008). Nonlinear dynamical systems and control: a Lyapunov-
based approach . Princeton: Princeton University Press. ISBN 9780691133294.
Jarvis-Wloszek, Z., Feeley, R., Tan, W., Sun, K., & Packard, A. (2005). Control applications of sum
of squares programming. In D. Henrion & A. Garulli (Eds.), Positive Polynomials in Control,
Lecture Notes in Control and Information Sciences , (pp. 3-22, Vol. 312). Berlin/Heidelberg:
Springer. doi : 10.1007/10997703_1 .
Löfberg, J. (2009). Pre- and post-processing sum-of-squares programs in practice. IEEE Transac-
tions on Automatic Control , 54 (5), 1007-1011.
Papachristodoulou, A. & Prajna, S. (2005). Analysis of non-polynomial systems using the sum
of squares decomposition. In D. Henrion & A. Garulli (Eds.), Positive polynomials in control,
Lecture Notes in Control and Information Sciences , (pp. 23-43, Vol. 312). Berlin/Heidelberg:
Springer. doi : 10.1007/10997703_2 .
Pitarch, J. L. & Sala, A. (2014). Multicriteria fuzzy-polynomial observer design for a 3DoF non-
linear electromechanical platform. Engineering Applications of Artificial Intelligence, 30 (4),
96-106. doi: 10.1016/j.engappai.2013.11.006 .
Pitarch, J. L., Ariño, C. V., Bedate, F., & Sala, A. (2010). Local fuzzy modeling: Maximising the
basin of attraction. In IEEE International Conference on Fuzzy Systems (FUZZ) (pp. 1-7). doi: 10.
1109/FUZZY.2010.5584617 .
Pitarch, J. L., Sala, A., Ariño, C. V., & Bedate, F. (2012). Estimación del dominio de atracción de
sistemas no lineales mediante modelos borrosos polinomiales. The Revista Iberoamericana de
Automática e Informática Industrial (RIAI) , 9 (2), 152-161. doi: 10.1016/j.riai.2012.02.007 .
Prajna, S., Papachristodoulou, A. &Wu, F. (2004b). Nonlinear control synthesis by sum of squares
optimization: a Lyapunov-based approach. In Control Conference, 2004. 5th Asian 1.
Prajna, S., Papachristodoulou, A., Seiler, P., & Parrilo, P. A. (2004a). SOSTOOLS: Sum of squares
optimization toolbox for MATLAB.
Sala, A., Pitarch, J. L., Bernal, M., Jaadari, A., &Guerra, T. M. (2011). Fuzzy polynomial observers.
In Proceedings of the 18th IFAC World Congress (pp. 12772-12776). Milano, Italy.
Sala, A., & Ariño, C. (2007). Assymptotically necessary and sufficient conditions for stability and
performance in fuzzy control: Applications of Polya's theorem. Fuzzy Sets and Systems , 158 (4),
2671-2686.
Sala, A. (2009). On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear sys-
tems. Annual Reviews In Control , 33 , 48-58.
Sala, A., & Ariño, C. V. (2009). Polynomial fuzzy models for nonlinear control: A Taylor series
approach. IEEE Transactions on Fuzzy Systems , 17 , 1284-1295.
Search WWH ::




Custom Search