Information Technology Reference
In-Depth Information
The processing of high-dimensional data is an important task for artificial neural
networks. Multilayered neural networks of different class of high-dimensional para-
meters are presented and analyzed in this topic. All neuronal parameters such as
input, output, action potential, and connection weights are encoded by respective
high-dimensional number system. The computational capability of a single complex-
valued, vector-valued, or quaternionic-valued neuron has been independently pre-
sented. In order to construct learning algorithm for respective networks analytic,
local analytic, or non-analytic conditions may be imposed on the activation function
in updating neuron's states. Instead of using conventional description, i.e., cartesian
representation, the Cliff-Ford algebra, Vector Calculus, and Wirtinger calculus may
be adopted to standardize the learning rules of high dimensional neural networks.
References
1. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Trans. Sig. Proc. 39 (9),
2101-2104 (1991)
2. Piazza, F., Benvenuto, N.: On the complex backpropagation algorithm. IEEE Trans. Sig. Proc.
40 (4), 967-969 (1992)
3. Nitta, T.: An analysis of the fundamental structure of complex-valued neurons. Neural Process.
Lett. 12 , 239-246 (2000)
4. Aizenberg, I., Moraga, C.: Multilayer feedforward neural network based on multi-valued neu-
rons (MLMVN) and a back-propagation learning algorithm. Soft Comput. 11 (2), 169-183
(2007)
5. Kim, T., Adali, T.: Approximation by fully complex multilayer perceptrons. Neural Comput.
15 , 1641-1666 (2003)
6. Hirose, A.: Complex-Valued Neural Networks. Springer, New York (2006)
7. Shin, Y., Keun-Sik, J., Byung-Moon, Y.: A complex pi-sigma network and its application
to equalization of nonlinear satellite channels. In: IEEE International Conference on Neural
Networks (1997)
8. Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Netw.
10 (8), 1391-1415 (1997)
9. Tripathi, B.K., Kalra, P.K.: On the learning machine for three dimensional mapping. Neural
Comput. Appl. 20 (01), 105-111. Springer (2011)
10. Moreno, A.B., Sanchez, A., Velez, J.F., Daz, F.J.: Face recognition using 3D surface-extracted
descriptors. In: Proceedings of IMVIPC (2003)
11. Xu, C., Wang, Y., Tan, T., Quan, L.: Automatic 3D face recognition combining global geometric
features with local shape variation information. In: Proceedings of AFGR, pp. 308-313 (2004)
12. Chen, L., Zhang, L., Zhang, H., Abdel-Mottaleb, M.: 3D shape constraint for facial feature
localization using probabilistic-like output. In: Proceedings of 6th IEEE International Confer-
ence on Automatic Face and Gesture Recognition (2004)
13. Achermann, B., Bunke, H.: Classifying range images of human faces with Hausdorff distance.
In: Proceedings of ICPR, pp. 809-813 (2000)
14. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans.
PA M I 25 (9), 1063-1074 (2003)
15. Hamilton, W.R.: Lectures on Quaternions. Hodges and Smith, Dublin (1853)
16. Nitta, T.: A solution to the 4-bit parity problem with a single quaternary neuron. Neural Inf.
Process. Lett. Rev. 5 , 33-39 (2004)
17. Wirtinger, W.: “Zur formalen theorie der funktionen von mehr komplexen ver”, anderlichen.
Math. Ann. 97 , 357-375 (1927)
 
Search WWH ::




Custom Search