Environmental Engineering Reference
In-Depth Information
Control parameters
B 1 = 10, B 2 = 20000, B 3 = 7, B 4 = 500
Parameters of the emulated wind turbine
R = 1.5 m, J t = 0.1 kg m 2 , C pmax = 0.4760, k = 7
Parameters of the DC motor
6.5 kW, 3850 rpm, 310 V, 24.8 A
R s = 78 X, R r = 0.78 X, L r = 3.6 H, J = 0.02 kg.m 2
Parameters of the tested DFIG
R s = 0.325 X, L s = 4.75 mH, R r = 0.13 X, L r = 1.03 mH,
M = 57.3 mH, p = 2
References
1. Liserre M, Cardenas R, Molinas M, Rodriguez J (2011) Overview of multi-MW wind
turbines and wind parks. IEEE Trans Ind Electron 58(4):1081-1095
2. Bianchi, FD, de Battista H, Mantz RJ (2007) Wind turbine control systems: principles,
modelling and gain scheduling design. Springer, London
3. Beltran, B, Benbouzid MEH, Ahmed-Ali T (2009) High-order sliding mode control of a
DFIG-based wind turbine for power maximization and grid fault tolerance. In: Proceedings of
the IEEE IEMDC'09, Miami, USA, pp 183-189, May 2009
4. Beltran B, Benbouzid MEH, Ahmed-Ali T, Mangel H (2011) DFIG-based wind turbine
robust control using high-order sliding modes and a high gain observer. Int Rev Model Simul
4(3):1148-1155
5. Benbouzid MEH, Beltran B, Mangel H, Mamoune A (2012) A high-order sliding mode
observer for sensorless control of DFIG-based wind turbines. In: Proceedings of the 2012
IEEE IECON, Montreal, Canada, pp 4288-4292, October 2012
6. Benbouzid MEH, Beltran B, Amirat Y, Yao G, Han J, Mangel H (2013) High-order sliding
mode control for DFIG-based wind turbine fault ride-through. In: Proceedings of the 2013
IEEE IECON, Vienna, Austria, pp 7670-7674, Nov 2013
7. Beltran B, Ahmed-Ali T, Benbouzid MEH (2008) Sliding mode power control of variable
speed wind energy conversion systems. IEEE Trans Energy Convers 23(22):551-558
8. Tazil M, Kumar V, Bansal RC, Kong S, Dong ZY, Freitas W, Mathur HD (2010) Three-
phase doubly fed induction generators: an overview. IET Power Appl 4(2):75-89
9. Senjyu T, Sakamoto R, Urasaki N, Funabashi T, Fujita H, Sekine H (2006) Output power
leveling of wind turbine generator for all operating regions by pitch angle control. IEEE
Trans Energy Convers 21(2):467-475
10. Pena R, Cardenas R, Proboste J, Asher G, Clare J (2008) Sensorless control of doubly-fed
induction generators using a rotor-current-based MRAS observer. IEEE Trans Ind Electron
55(1):330-339
11. Xu L, Cartwright P (2006) Direct active and reactive power control of DFIG for wind energy
generation. IEEE Trans Energy Convers 21(3):750-758
12. Cardenas R, Pena R, Proboste J, Asher G, Clare J (2005) MRAS observer for sensorless
control
of
standalone
doubly
fed
induction
generators.
IEEE
Trans
Energy
Convers
20(4):710-718
13. Vepa R (2011) Nonlinear, optimal control of a wind turbine generator. IEEE Trans Energy
Convers 26(2):468-478
Search WWH ::




Custom Search