Information Technology Reference
In-Depth Information
M 2,1 M 1
1,1 M 1,2
L 2
D 2
MULT [ n/ 2 ]
Tr a n s p o s e
M 2,1 ( L 1 ) T D 1
LDL T [ n/ 2]
1
SCALE [ n/ 2 ]
M 2,1 M 1
S = M 2,2
1,1 M 1,2
M 2,1 ( L 1 ) T
SUB [ n/ 2 ]
MULT [ n/ 2 ]
M 2,2
Tr a n s p o s e
M 2,1
L 1
1
TRI INV [ n/ 2 ]
L 1
D 1
LDL T [ n/ 2]
M 1,1
Figure 6.6 An algebraic circuit to produce the LDL
T factorization of an SPD matrix.
1,1 M 1,2 can be formed by multiplying M 2,1 L 1 T D 1
M 2,1 M 1
S = M 2,2
1 by the
transpose of M 2,1 L 1 T using MULT [ n/ 2 ] and subtracting the result from M 2,2 by the
subtraction operator SUB [ n/ 2 ] .
The LDL T
factorization of the n/ 2
×
n/ 2matrix S is computed using the procedure
LDL T [ n/ 2] to produce the n/ 2
×
n/ 2 triangular and diagonal matrices L 2 and D 2 ,re-
spectively.
Let's now determine the size and depth of circuits to implement the algorithm for LDL T [ n ].
Let f ( n )
n 2
( n 2 + n ) / 2 be the function defined by the LDL T factorization of an n
R
→R
×
n
LDL T :
SPD matrix, f ( n )
( n 2 + n ) / 2
( n 2 + n ) / 2 be the inversion of an n
R
→R
×
n lower triangular
tri inv :
matrix, f ( n )
n 2 + n
n 2
be the computation of N ( D 1 ) for an n
scale :
R
→R
×
n matrix N and
adiagonalmatrix D , f ( n )
2 n 2
n 2 be the multiplication of two n
mult :
R
→R
×
n matrices, and
f ( n )
2 n 2
n 2
sub :
R
→R
the subtraction of two n
×
n matrices. Since a transposition can be done
 
Search WWH ::




Custom Search