Information Technology Reference
In-Depth Information
By denoting as v D x 1 C x 2 )y 1 D.x 1 C x 2 / C Œx 2 .x 2 a/.1
x 2 /x 1 C u , one arrives again at a state space description of the system in the linear
canonical form. Thus setting z 1 D y 1 and z 2 Dy 1 D y 2 one gets Eq. ( 4.40 )
z 1
z 2
01
00
z 1
z 2
0
1
u
D
C
(4.46)
For the linearized neuron model one can define a feedback control signal using that
y D v .
v Dy d
k d . y y d / k p .y y d /)
(4.47)
and using that L f h.x/ C L g L f h.x/ u D v one has
u D . v L f h.x//=L g L f h.x/
(4.48)
4.10
Linearization of Coupled FitzHugh-Nagumo Neurons
Using Differential Geometry
The following system of coupled neurons is considered
dV 1
dt
D V 1 .V 1 ˛/.1 V 1 / w 1 C g.V 1 V 2 / C I 1
dw 1
dt
D .V 1 w 1 /
(4.49)
dV 2
dt
D V 2 .V 2 ˛/.1 V 2 / w 2 C g.V 2 V 1 / C I 2
dw 2
dt
D .V 2 w 2 /
The following state variables are defined x 1 D w 1 , x 2 D V , x 3 D w 2 , x 4 D
V 2 , u 1 D I 1 and u 2 D I 2 (Fig. 4.8 ). Thus, one obtains the following state-space
description
dx 1
dt
Dx 1 C x 2
dx 2
dt
D x 2 .x 2 a/.1 x 2 / x 1 C g.x 2 x 1 / C u 1
(4.50)
dx 3
dt
Dx 3 C x 4
dx 4
dt
D x 4 .x 4 a/.1 x 4 / x 3 C g.x 4 x 2 / C u 2
while the measured output is taken to be
y 1 D h 1 .x/ D x 1
y 2 D h 2 .x/ D x 3
(4.51)
Search WWH ::




Custom Search