Information Technology Reference
In-Depth Information
where x D Œx 1 ; ;x n T is the state vector of the transformed system (according to
the differential flatness formulation), u D Πu 1 ; ; u p T is the set of control inputs,
y D Œy 1 ; ;y p T is the output vector, f i are the drift functions, and g i;j ;i;jD
1;2; ;pare smooth functions corresponding to the control input gains, while d j
is a variable associated with external disturbances. It holds that r 1 Cr 2 CCr p D n.
Having written the initial nonlinear system into the canonical (Brunovsky) form it
holds
D f i .x/ C P jD1 g ij .x/ u j C d j
y .r i /
i
(4.28)
Next the following vectors and matrices can be defined f.x/DŒf 1 .x/; ;f n .x/ T ,
g.x/
Œg 1 .x/; ;g n .x/ T
Œg 1i .x/; ;g pi .x/ T , A
D
with g i .x/
D
D
diag ŒB 1 ; ;B p , C T
diag ŒA 1 ; ;A p ;B
D diag ŒC 1 ; ;C p ;d D
Œd 1 ; ;d p T , where matrix A has the MIMO canonical form, i.e. with block-
diagonal elements
D
0
1
010
000
: : : : : :
@
A
: : :
001
000
A i D
(4.29)
r i r i
B i D 0001 1r i
C i D 1000 1r i
Thus, Eq. ( 4.28 ) can be written in state-space form
x D Ax C Bv C B d
y D Cx
(4.30)
where the control input is written as v D f.x/C g.x/ u .
4.9
Linearization of the FitzHugh-Nagumo Neuron
4.9.1
Linearization of the FitzHugh-Nagumo Model Using
a Differential Geometric Approach
The model of the dynamics of the FitzhHugh Nagumo neuron is considered
dV
dt
D V.V a/.1 V/ w C I
dw
dt
(4.31)
D .V w /
 
Search WWH ::




Custom Search