Environmental Engineering Reference
In-Depth Information
5. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film
thickness, and silicon doping on the performance of nanostructured hematite photoanodes
for solar water splitting. J Phys Chem C 113(2):772-782
6. Chen X, Ye J, Ouyang S, Kako T, Li Z, Zou Z (2011) Enhanced incident photon-to-electron
conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
ACS Nano 5(6):4310-4318
7. Cho IS, Chen ZB, Forman AJ, Kim DR, Rao PM, Jaramillo TF, Zheng XL (2011) Branched
TiO 2 nanorods for photoelectrochemical hydrogen production. Nano Lett 11(11):4978-4984
8. Chouhan N, Yeh CL, Hu SF, Liu RS, Chang WS, Chen KH (2011) Photocatalytic CdSe
QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water. Chem
Commun 47(12):3493-3495
9. Cong Y, Zhang JL, Chen F, Anpo M (2007) Synthesis and characterization of nitrogen-
doped
TiO 2
nanophotocatalyst
with
high
visible
light
activity.
J
Phys
Chem
C
111(19):6976-6982
10. Cristino V, Caramori S, Argazzi R, Meda L, Marra GL, Bignozzi CA (2011) Efficient
photoelectrochemical
water splitting by anodically grown WO 3 electrodes.
Langmuir
27(11):7276-7284
11. Currao A (2007) Photoelectrochemical water splitting. Chimia 61(12):815-819
12. Elfanaoui A, Elhamri E, Boulkaddat L, Ihlal A, Bouabid K, Laanab L, Taleb A, Portier X
(2011) Optical and structural properties of TiO 2 thin films prepared by sol-gel spin coating.
Int J Hydrogen Energ 36(6):4130-4133
13. Farhangi N, Chowdhury RR, Medina-Gonzalez Y, Ray MB, Charpentier PA (2011) Visible
light active Fe doped TiO 2 nanowires grown on graphene using supercritical CO 2 . Appl
Catal B-Environ 110:25-32
14. Fei HH, Yang YC, Rogow DL, Fan XJ, Oliver SRJ (2010) Polymer-templated nanospider
TiO 2 thin films for efficient photoelectrochemical water splitting. Acs Appl Mater Inter
2(4):974-979
15. Feng XJ, LaTempa TJ, Basham JI, Mor GK, Varghese OK, Grimes CA (2010) Ta 3 N 5
nanotube arrays for visible light water photoelectrolysis. Nano Lett 10(3):948-952
16. Feng XJ, Shankar K, Varghese OK, Paulose M, Latempa TJ, Grimes CA (2008) Vertically
aligned single crystal TiO 2 nanowire arrays grown directly on transparent conducting oxide
coated glass: synthesis details and applications. Nano Lett 8(11):3781-3786
17. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor
electrode. Nature 238(5358):37-38
18. Gan JY, Lu XH, Zhai T, Zhao YF, Xie SL, Mao YC, Zhang YL, Yang YY, Tong YX (2011)
Vertically aligned In 2 O 3 nanorods on FTO substrates for photoelectrochemical applications.
J Mater Chem 21(38):14685-14692
19. Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P (2006) TiO 2 -Nb 2 O 5 nanotubes with
electrochemically tunable morphologies. Angew Chem-Int Edit 45(42):6993-6996
20. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2005) Titanium oxide nanotubes prepared in
phosphate electrolytes. Electrochem Commun 7(5):505-509
21. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC (2001)
Titanium
oxide
nanotube
arrays
prepared
by
anodic
oxidation.
J
Mater
Res
16(12):3331-3334
22. Gopal NO, Lo HH, Ke TF, Lee CH, Chou CC, Wu JD, Sheu SC, Ke SC (2012) Visible light
active phosphorus-doped TiO 2 nanoparticles: an EPR evidence for the enhanced charge
separation. J Phys Chem C 116(30):16191-16197
23. Gratzel M (2001) Photoelectrochemical cells. Nature 414(6861):338-344
24. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang YF, Saykally RJ, Yang PD
(2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem-Int
Edit 42(26):3031-3034
25. Gust D, Moore TA, Moore AL (2009) Solar Fuels via Artificial Photosynthesis. Acc Chem
Res 42(12):1890-1898
Search WWH ::




Custom Search