Environmental Engineering Reference
In-Depth Information
50. Baumgardner WJ, Choi JJ, Lim Y-F, Hanrath T (2010) SnSe nanocrystals: synthesis,
structure, optical properties, and surface chemistry. J Am Chem Soc 132(28):9519-9521.
PubMed PMID: WOS:000280086800003
51. Dai Q, Li D, Chang J, Song Y, Kan S, Chen H et al (2007) Facile synthesis of magic-sized
CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology 18(40):405603.
PubMed PMID: WOS:000249735400016
52. Yarema M, Pichler S, Sytnyk M, Seyrkammer R, Lechner RT, Fritz-Popovski G et al (2011)
Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum
dots from a silylamide-promoted synthesis. ACS Nano 5(5):3758-3765. PubMed PMID:
WOS:000290826800041
53. Puthussery J, Seefeld S, Berry N, Gibbs M, Law M (2012) Colloidal iron pyrite (FeS2)
nanocrystal inks for thin-film photovoltaics. J Am Chem Soc 133(4):716-719
54. Kirkeminde A, Ruzicka B, Wang R, Puna S, Zhao H, Ren SQ (2012) Synthesis and
optoelectronic properties of two-dimensional FeS2 nanoplates. ACS Appl Mater Interfaces.
doi: 10.1021/am300089f
55. Zhang JT, Tang Y, Lee K, Min OY (2010) Nonepitaxial growth of hybrid core-shell
nanostructures with large lattice mismatches. Science 327(5973):1634-1638. PubMed PMID:
WOS:000275970600041. English
56. Xu C, Zeng Y, Rui XH, Xiao N, Zhu JX, Zhang WY et al (2012) Controlled soft-template
synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance. ACS Nano
6(6):4713-4721. PubMed PMID: WOS:000305661300019 (English)
57. Buker K, Alonsovante N, Tributsch H (1992) Photovoltaic output limitation of N-FeS2
(pyrite)
schottky
barriers—a
temperature-dependent
characterization.
J
Appl
Phys
72(12):5721-5728. PubMed PMID: WOS:A1992KC85000029
58. O'Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized
colloidal TiO2 films. Nature 353(6346):737-740
59. Ennaoui A, Fiechter S, Tributsch H, Giersig M, Vogel R, Weller H (1992)
photoelectrochemical energy-conversion obtained with ultrathin organo-metallic-chemical-
vapor-deposition layer of FeS2 (pyrite) on TiO2. J Electrochem Soc 139(9):2514-2518.
PubMed PMID: WOS:A1992JL82500032
60. Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) Pyrite nanocrystal solar
cells: promising, or fool's gold? J Phys Chem Lett 3(17):2352-2356. PubMed PMID:
WOS:000308342500008
61. Tang J, Kemp KW, Hoogland S, Jeong KS, Liu H, Levina L et al Colloidal-quantum-dot
photovoltaics using atomic-ligand passivation. Nat Mater 10(10):765-771
62. Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N et al Inorganic-organic hybrid solar
cell: bridging quantum dots to conjugated polymer nanowires. Nano Lett 11(9):3998-4002
63. Kirkeminde A, Scott R, Ren S (2012) All inorganic iron pyrite nano-heterojunction solar
cells. Nanoscale 4(24):7649-7654. PubMed PMID: MEDLINE:23041909
64. Wang D-Y, Jiang Y-T, Lin C-C, Li S-S, Wang Y-T, Chen C-C et al (2012) Solution-
processable pyrite FeS2 nanocrystals for the fabrication of heterojunction photodiodes with
visible to NIR photodetection. Adv Mater 24(25):3415-3420
65. Gong M, Kirkeminde A, Xie Y, Lu R, Liu J, Wu JZ et al (2012) Iron pyrite (FeS2) broad
spectral and magnetically responsive photodetectors. Adv Funct Mater 78-83
Search WWH ::




Custom Search