Environmental Engineering Reference
In-Depth Information
6. Emsley J (2011) Nature's building blocks: an A-Z guide to the elements. Oxford University
Press, USA
7. Wadia C, Alivisatos AP, Kammen DM (2009) Materials availability expands the opportunity
for large-scale photovoltaics deployment. Environ Sci Technol 43(6):2072-2077
8. Chapman P, Roberts F (1983) Metal resources and energy. Buttersworths, London
9. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science
295(5564):2425-2427
10. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K et al (2005) High-efficiency
solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat
Mater 4(11):864-868
11. Contreras MA, Egaas B, Ramanathan K, Hiltner J, Swartzlander A, Hasoon F et al (1999)
Progress toward 20 % efficiency in Cu(In, Ga)Se2 polycrystalline thin-film solar cells. Prog
Photovoltaics Res Appl 7(4):311-316
12. Ren S, Chang L-Y, Lim S-K, Zhao J, Smith M, Zhao N et al (2011) Inorganic-organic hybrid
solar
cell:
bridging
quantum
dots
to
conjugated
polymer
nanowires.
Nano
Lett
11(9):3998-4002
13. Luther JM, Law M, Beard MC, Song Q, Reese MO, Ellingson RJ et al (2008) Schottky solar
cells based on colloidal nanocrystal films. Nano Lett 8(10):3488-3492
14. Arango AC, Oertel DC, Xu Y, Bawendi MG, Bulovi ยด V (2009) Heterojunction photovoltaics
using printed colloidal quantum dots as a photosensitive layer. Nano Lett 9(2):860-863
15. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar
cells processed from solution. Science 310(5747):462-465
16. Gledhill
SE,
Scott
B,
Gregg
BA
(2005)
Organic
and
nano-structured
composite
photovoltaics:
an
overview.
J
Mater
Res
20(12):3167-3179.
PubMed
PMID:
WOS:000233628600002
17. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G et al (2007) Coaxial silicon nanowires as
solar cells and nanoelectronic power sources. Nature 449(7164):885-888. PubMed PMID:
WOS:000250230600042
18. Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic
application of copper (I) sulfide nanocrystals. Nano Lett 8(8):2551-2555. PubMed PMID:
WOS:000258440700076
19. Yu L, Lany S, Kykyneshi R, Jieratum V, Ravichandran R, Pelatt B et al (2011) Iron
chalcogenide photovoltaic absorbers. Adv Energy Mater 1(5):748-753. PubMed PMID:
WOS:000295140100005
20. Bronold M, Tomm Y, Jaegermann W (1994) surface-states on cubic d-band semiconductor
pyrite (FES(2)). Surf Sci 314(3):L931-L936. PubMed PMID: WOS:A1994NZ92900011
21. Sun R, Chan MKY, Ceder G (2011) First-principles electronic structure and relative stability
of
pyrite
and
marcasite:
implications
for
photovoltaic
performance.
Phys
Rev
B
83(23):235311. PubMed PMID: WOS:000291398400006
22. Sun R, Chan MKY, Kang S, Ceder G. Intrinsic stoichiometry and oxygen-induced p-type
conductivity of pyrite FeS_{2}. Phys Rev B 84(3):035212
23. Macpherson HA, Stoldt CR (2012) Iron pyrite nanocubes: size and shape considerations for
photovoltaic
application.
ACS
Nano
6(10):8940-8949.
PubMed
PMID:
WOS:000310096100053
24. Kirkeminde A, Ren S (2013) Thermodynamic control of iron pyrite nanocrystal synthesis
with high photoactivity and stability. J Mater Chem A 1(1):49-54
25. Wang D, Wang Q, Wang T (2010) Shape controlled growth of pyrite FeS2 crystallites via a
polymer-assisted hydrothermal route. CrystEngComm 12(11):3797-3805. PubMed PMID:
WOS:000283315900078
26. Barnard
AS,
Russo
SP
(2007)
Shape
and
thermodynamic
stability
of
pyrite
FeS2
Nanocrystals and Nanorods. J Phys Chem C 111(31):11742-11746
27. Barnard AS, Russo SP (2009) Modelling nanoscale FeS2 formation in sulfur rich conditions.
J Mater Chem 19(21):3389-3394. PubMed PMID: WOS:000266269300010
Search WWH ::




Custom Search