Environmental Engineering Reference
In-Depth Information
142. Yuan S, Huang H, Wang Z, Zhao Y, Shi L, Cai C, Li D (2013) Improved electron-collection
performance of dye sensitized solar cell based on three-dimensional conductive grid.
J Photochem Photobiol A 259:10-16
143. Cho CY, Moon JH (2012) Hierarchical twin-scale inverse opal TiO 2 electrodes for dye-
sensitized solar cells. Langmuir 28(25):9372-9377
144. Kwak ES, Lee W, Park NG, Kim J, Lee H (2009) Compact inverse-opal electrode using
non-aggregated
TiO 2
nanoparticles
for
dye-sensitized
solar
cells.
Adv
Funct
Mater
19(7):1093-1099
145. Toyoda T, Shen Q (2012) Quantum-dot-sensitized solar cells: effect of nanostructured TiO 2
morphologies on photovoltaic properties. J Phys Chem Lett 3(14):1885-1893
146. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-
dot-sensitized TiO 2 inverse opal solar cells. Appl Phys Lett 91(2)
147. Shalom M, Dor S, Rühle S, Grinis L, Zaban A (2009) Core/CdS quantum dot/shell
mesoporous solar cells with improved stability and efficiency using an amorphous TiO 2
coating. J Phys Chem C 113:3895-3898
148. Chakrapani V, Baker D, Kamat PV (2011) Understanding the role of the sulfide redox
couple (S 2- /S 2- ) in quantum dot-sensitized solar cells. J Am Chem Soc 133:9607-9615
149. Gonzalez-Pedro V, Sima C, Marzari G, Boix PP, Gimenez S, Shen Q, Dittrich T, Mora-Sero
I (2013) High performance PbS quantum dot sensitized solar cells exceeding 4 % efficiency:
the role of metal precursors in the electron injection and charge separation. Phys Chem
Chem Phys
150. Jovanovski V, González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-
Zaera R, Mora-Seró I, Bisquert J (2011) A sulfide/polysulfide-based ionic liquid electrolyte
for quantum dot-sensitized solar cells. J Am Chem Soc 133:20156-20159
151. Choné C, Larramona G (2007) French Patent 2899385, 05
152. Messina S, Nair MTS, Nair PK (2007) Antimony sulfide thin films in chemically deposited
thin film photovoltaic cells. Thin Solid Films 515:5777-5782
153. Moon S-J, Itzhaik Y, Yum J-H, Zakeeruddin SM, Hodes G, Grätzel M (2010) Sb2 S 3 - based
mesoscopic solar cell using an organic hole conductor. J Phys Chem Lett 1:1524-1527
154. Im SH, Lim C-S, Chang JA, Lee YH, Maiti N, Kim H-J, Nazeeruddin MK, Grätzel M, Seok
SI (2011) Toward interaction of sensitizer and functional moieties in hole-transporting
materials for efficient semiconductor-sensitized solar cells. Nano Lett 11:4789-4793
155. Hodes G, Manassen J, Cahen D (1980) Electrocatalytic electrodes for the polysulfide redox
system. J Electrochem Soc 127:544-549
156. Yang YY, Zhu LF, Sun HC, Huang XM, Luo YH, Li DM, Meng QB (2012) Composite
counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-
sensitized solar cells with both high efficiency and stability. Acs Appl Mater Interfaces
4(11):6162-6168
157. Sudhagar P, Ramasamy E, Cho W-H, Lee J, Kang YS (2011) Robust mesocellular carbon
foam counter electrode for quantum-dot sensitized solar cells. Electrochem Commun
13(1):34-37
158. Yang, Z.; Chen, C.-Y.; Liu, C.-W.; Li, C.-L.; Chang, H.-T., Quantum Dot-Sensitized Solar
Cells Featuring CuS/CoS Electrodes Provide 4.1 % Efficiency. Advanced Energy Materials
2011, 1, 259-264
159. Deng M, Huang S, Zhang Q, Li D, Luo Y, Shen Q, Toyoda T, Meng Q (2010) Screen-
printed Cu2 S -based counter electrode for quantum-dot-sensitized solar cell. Chem Lett
39:1168-1170
160. Radich JG, Dwyer R, Kamat PV (2011) Cu2 S reduced graphene oxide composite for high-
efficiency quantum dot solar cells. overcoming the redox limitations of S2 / Sn -
at the counter
electrode. J Phys Chem Lett 2:2453-2460
161. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to
boost efficiency over 5 %. J Am Chem Soc 134(5):2508-2511
162. Santra PK, Kamat PV (2012) Mn-doped quantum dot sensitized solar cells: a strategy to
boost efficiency over 5 %. J Am Chem Soc 134(5):2508-2511
Search WWH ::




Custom Search