Environmental Engineering Reference
In-Depth Information
42. Jia S, Banerjee S, Herman IP (2008) Mechanism of the electrophoretic deposition of CdSe
nanocrystal films: influence of the nanocrystal surface and charge. J Phys Chem C
112:162-171
43. Brown P, Kamat PV (2008) Quantum dot solar cells. Electrophoretic deposition of CdSe-C-
60 composite films and capture of photogenerated electrons with nC(60) cluster shell. J Am
Chem Soc 130(28):8890-+
44. Mane RS, Lokhande CD (2000) Chemical deposition method for metal chalcogenide thin
films. Mater Chem Phys 65(1):1-31
45. Chang CH, Lee YL (2007) Chemical bath deposition of CdS quantum dots onto mesoscopic
TiO 2 films for application in quantum-dot-sensitized solar cells. Appl Phys Lett 91(5)
46. Jung SW, Kim JH, Kim H, Choi CJ, Ahn KS (2010) CdS quantum dots grown by in situ
chemical bath deposition for quantum dot-sensitized solar cells. J Appl Phys 110(4)
47. Sudhagar P, Jung JH, Park S, Lee YG, Sathyamoorthy R, Kang YS, Ahn H (2009) The
performance of coupled (CdS:CdSe) quantum dot-sensitized TiO 2 nanofibrous solar cells.
Electrochem Commun 11(11):2220-2224
48. Lee YL, Huang BM, Chien HT (2008) Highly efficient CdSe-Sensitized TiO 2
photoelectrode for quantum-Dot-sensitized solar cell applications. Chem Mater 20(22):
6903-6905
49. Itzhaik Y, Niitsoo O, Page M, Hodes G (2009) Sb2S3-sensitized nanoporous TiO 2 solar
cells. J Phys Chem C 113(11):4254-4256
50. Boix PP, Larramona G, Jacob A, Delatouche B, Mora-Sero I, Bisquert J (2012) Hole
transport and recombination in all-solid Sb2S3-sensitized TiO 2 solar cells using CuSCN as
hole transporter. J Phys Chem C 116(1):1579-1587
51. Maiti N, Im SH, Lim CS, Seok SI (2012) A chemical precursor for depositing Sb2S3 onto
mesoporous TiO 2 layers in nonaqueous media and its application to solar cells. Dalton Trans
41(38):11569-11572
52. Gui EL, Kang AM, Pramana SS, Yantara N, Mathews N, Mhaisalkar S (2012) Effect of
TiO 2 mesoporous layer and surface treatments in determining efficiencies in antimony
sulfide-(Sb2S3) sensitized solar cells. J Electrochem Soc 159(3):B247-B250
53. Lan GY, Yang ZS, Lin YW, Lin ZH, Liao HY, Chang HT (2009) A simple strategy for
improving the energy conversion of multilayered CdTe quantum dot-sensitized solar cells.
J Mater Chem 19(16):2349-2355
54. Samadpour M, Zad AI, Taghavinia N, Molaei M (2011) A new structure to increase the
photostability of CdTe quantum dot sensitized solar cells. J Phys D Appl Phys 44(4)
55. Yang ZS, Chang HT (2010) CdHgTe and CdTe quantum dot solar cells displaying an
energy conversion efficiency exceeding 2 %. Sol Energy Mater Sol Cells 94(12):2046-2051
56. Yu XY, Lei BX, Kuang DB, Su CY (2011) Highly efficient CdTe/CdS quantum dot
sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition.
Chem Sci 2(7):1396-1400
57. Tachan Z, Shalom M, Hod I, Ruhle S, Tirosh S, Zaban A (2011) PbS as a highly catalytic
counter
electrode
for
polysulfide-based
quantum
dot
solar
cells.
J
Phys
Chem
C
115(13):6162-6166
58. Ju T, Graham RL, Zhai GM, Rodriguez YW, Breeze AJ, Yang LL, Alers GB, Carter SA
(2010) High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low
temperature. Appl Phys Lett 97(4)
59. Lee H, Leventis HC, Moon SJ, Chen P, Ito S, Haque SA, Torres T, Nuesch F, Geiger T,
Zakeeruddin SM, Gratzel M, Nazeeruddin MK (2009) PbS and US quantum dot-sensitized
solid-state solar cells: old concepts, new results. Adv Funct Mater 19(17):2735-2742
60. Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P,
Zakeeruddin SM, Il Seok S, Gratzel M, Nazeeruddin MK (2009) Regenerative PbS and CdS
quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir
25(13):7602-7608
Search WWH ::




Custom Search