Chemistry Reference
In-Depth Information
6.7. SUMMARY
In summary, a broad range of enzymes turned out to be effi cient catalysts in asymmetric
synthesis. Often, excellent enantioselectivities are achieved, thus making biocatalysis an
attractive tool for the enantioselective preparation of chiral molecules. Enzymes can be
used in different forms, such as isolated and immobilized enzymes or whole-cell cata-
lysts. The use of recombinant whole cells, containing the desired enzymes in overex-
pressed form, is gaining more and more attention. In particular, recombinant whole-cell
catalysts are attractive in the fi eld of redox biocatalysis due to the need of (often) more
than one enzyme for the biotransformation. Besides excellent enantioselectivities (as a
key feature of many enzymatic processes), high conversions at high substrate concentra-
tions have also been realized for a broad range of biotransformations. Thus, it is no
surprise that there is also an increasing tendency to apply biocatalysis on industrial scale,
and numerous biocatalytic manufacturing processes are already running successfully on
industrial scale. Without any doubt, in the future, we can expect further effi cient bio-
catalytic syntheses on lab and technical scales.
REFERENCES
1. Review: Pollard , D. ; Woodley , J. M. Trends Biotechnol. 2007 , 25 , 66 - 73 .
2. For a very comprehensive summary of biocatalysis in organic synthesis, see: Drauz , K. ; Waldmann ,
H. (Eds.). Enzymes in Organic Synthesis . Weinheim : Wiley - VCH , 2002 ; Vol. 1 - 3 .
3. Review
about
lipase - catalyzed
enantioselective
reactions:
Ghanem ,
A.
Tetrahedron
2007 ,
63 ,
1721 - 1754 .
4. Review: Bruggink , A. ; Schoevaart , R. ; Kieboom , T. Org. Proc. Res. Dev. 2003 , 7 , 622 - 640 .
5. For a very comprehensive overview, see: (a) Gais , H. - J. ; Theil , F. In Enzymes in Organic Synthesis ,
2nd ed. (Eds. Drauz , K. ; Waldmann , H. ). Weinheim : Wiley - VCH , 2002 ; Vol. 2 , pp. 335 - 578 . (b)
Koskinen , A. M. P. ; Klibanov , A. M. (Eds.). Enzymatic Reactions in Organic Media . Glasgow :
Blackie Academic & Professional , 1996 .
6. Breuer , M. ; Ditrich , K. ; Habicher , T. ; Hauer , B. ; Ke ß eler , M. ; St ü rmer , R. ; Zelinski , T. Angew. Chem.
2004 , 116 , 806 - 843 ; Angew. Chem. Int. Ed. 2004 , 43 , 788 - 824 .
7. Effenberger , F. ; Gutterer , B. ; Ziegler , T. ; Eckhardt , E. ; Aichholz , R . Liebigs Ann. Chem. 1991 ,
47 - 54 .
8. Hazelard , D. ; Fadel , A. ; Morgant , G. Tetrahedron Asymmetry 2005 , 15 , 1711 - 1718 .
9. Ramineli , C. ; Comasseto , J. V. ; Adrade , L. H. ; Porto , A. L. M. Tetrahedron Asymmetry 2004 , 15 ,
3117 - 3122 .
10. Baumann , M. ; Hauer , H. B. ; Bornscheuer , U. T. Tetrahedron Asymmetry 2000 , 11 , 4781 - 4790 .
11. Kourist , R. ; Gonzalez - Sabin , J. ; Liz , R. ; Rebolledo , F. Adv. Synth. Catal. 2005 , 347 , 695 - 702 .
12. Kamal , A. ; Sandbhor , M. ; Ramana , K. Tetrahedron Asymmetry 2002 , 13 , 815 - 820 .
13. Dinh , P. M. ; Howarth , J. A. ; Hudnott , A. R. ; Williams , J. M. J. ; Harris , W . Tetrahedron Lett. 1996 ,
42 , 7623 - 7626 .
14. Persson , B. A. ; Larsson , A. L. E. ; Le Ray , M. ; B ä ckvall , J. E. J. Am. Chem. Soc. 1999 , 121 ,
1645 - 1650 .
15. Larsson , A. L. E. ; Persson , B. A. ; B ä ckvall , J. E. Angew. Chem. 1997 , 109 , 1256 - 1258 ; Angew. Chem.
Int. Ed. Engl. 1997 , 36 , 1211 - 1212 .
16. Review: P à mies , O. ; B ä ckvall , J. - E. Chem. Rev. 2003 , 103 , 3247 - 3261 .
Search WWH ::




Custom Search