Biomedical Engineering Reference
In-Depth Information
u ð t Þ ¼ X
m
/ i x i ð t Þ
ð 2 : 124 Þ
i¼1
Therefore the response analysis requires, first, the solution of the eigenvalues
and eigenvectors of the problem, Eq. ( 2.113 ), then the solution of the decoupled
equilibrium equations in Eq. ( 2.122 ) and, finally, the superposition of the response
in each eigenvector as expressed in Eq. ( 2.124 ).
2.3.7 Forced Vibrations
In this topic when forced vibrations are imposed only three different time-
dependent loading conditions are considered, f ð t Þ ¼f g ð t Þ . A time constant
load—load case A,
g A ð t Þ ¼1
ð 2 : 125 Þ
A transient load—load case B,
g B ð t Þ ¼1 ft t i
g B ð t Þ ¼0 ft [ t i
ð 2 : 126 Þ
And a harmonic load—load case C,
g C ð t Þ ¼sin ð c t Þ
ð 2 : 127 Þ
The solution of each equation in Eq. ( 2.123 ) can be calculated using the
Duhamel integral,
Z
t
x i ð t Þ ¼ 1
x i
f i ð s Þ sin x i ð t s Þ
ð
Þ ds þ a i sin x i ðÞþ b i cos x i ðÞ 2 : 128 Þ
0
where a i and b i are determined from the initial conditions: Eq. ( 2.123 ) and
f i ð t Þ ¼/ i f ð t Þ . For load case A and load case B the obtained solution is defined as,
Þ þ x t¼0
x i ð t Þ ¼ f i ð t Þ
x i
i
x i
sin x i ðÞþ x t¼0
ð
1 cos x i ðÞ
cos x i ðÞ 2 : 129 Þ
i
For load case C the obtained solution is,
x i ð t Þ ¼ f i ð t Þ
x i c 2
sin c ðÞ c
x i
sin x i ðÞ
ð 2 : 130 Þ
Search WWH ::




Custom Search