Biomedical Engineering Reference
In-Depth Information
¼ X
n
u i þ X
m
2 u h ð x I Þ
onog
2 u i ð x I Þ
onog
2 w i ð x I Þ
onog z i
|{z}
0
o
o
o
¼ u ð x I Þ ; ng u s
ð 4 : 135 Þ
i¼1
i¼1
Following the same argument used to obtain Eq. ( 4.131 ), the spatial second
order partial derivative of the RPI shape function with respect to n and g, is defined
as,
n
o ¼ r ð x I Þ ; ng
n
o M 1
T
u ð x I Þ ; ng
w ð x I Þ ; ng
p ð x I Þ ; ng
ð 4 : 136 Þ
in which the second order cross partial derivative of the RBF vector is defined as,
T
r ð x I Þ ; ng ¼ r 1 ð x I Þ ; ng
r 2 ð x I Þ ; ng
... r n ð x I Þ ; ng
n
o T
¼ o 2 r 1 ð x I Þ
onog
o 2 r 2 ð x I Þ
onog
o 2 r n ð x I Þ
onog
ð 4 : 137 Þ
being,
p 2
o 2 r i ð x I Þ
onog
Þ d iI þ cd ð 2
¼ 4pp 1
ð
Þ n i n I
ð
Þ g i g I
ð
ð 4 : 138 Þ
The respective second order cross partial derivative of the polynomial basis
vector is obtained with,
T
p ð x I Þ ; ng ¼ p 1 ð x I Þ ; ng
p 2 ð x I Þ ; ng
... p m ð x I Þ ; ng
n
o T
¼ o 2 p 1 ð x I Þ
onog
o 2 p 2 ð x I Þ
onog
o 2 p n ð x I Þ
onog
ð 4 : 139 Þ
The second order partial derivative of the interpolated field function with
respect to the generic variable n can be determined with,
¼ X
u i þ X
o 2 u h ð x I Þ
on 2
n
o 2 u i ð x I Þ
on 2
o 2 w i ð x I Þ
on 2 z i
|{z}
0
m
¼ u ð x I Þ ; nn u s
ð 4 : 140 Þ
i¼1
i¼1
Following the previous argument, the spatial second order partial derivative of
the PIM shape function with respect to n is obtained.
n
o ¼ r ð x I Þ ; nn
n
o M 1
T
u ð x I Þ ; nn
w ð x I Þ ; nn
p ð x I Þ ; nn
ð 4 : 141 Þ
Search WWH ::




Custom Search