Information Technology Reference
In-Depth Information
l 1
...
l g 1
q 1
...
q u
l g + 1
...
l n
k 1
a k 1 , l 1
...
a k 1 , l g 1
a k 1 , l g
...
a k 1 , l g
a k 1 , l g + 1
...
a k 1 , l n
.
.
.
.
.
.
.
.
.
.
k f 1 a k f 1 , l 1
...
a k f 1 , l g 1 a k f 1 , l g
...
a k f 1 , l g a k f 1 , l g + 1
...
a k f 1 , l n
p 1
a k f , l 1
...
a k f , l g 1
b p 1 , q 1
...
b p 1 , q v
a k f , l g + 1
...
a k f , l n
=
.
.
.
.
.
.
.
.
.
.
.
p u
a k f , l 1
...
a k f , l g 1
b p u , q 1
...
b p u , q v
a k f , l g + 1
...
a k f , l n
...
...
...
k f + 1 a k f + 1 , l 1
a k f + 1 , l g 1 a k f + 1 , l g
a k f + 1 , l g a k f + 1 , l g + 1
a k f + 1 , l n
.
.
.
.
.
.
.
.
.
.
k m
a k m , l 1
...
a k m , l g 1
a k m , l g
...
a k m , l g
a k m , l g + 1
...
a k m , l n
Now, the following assertion is valid .
Theorem 9 Let A
=[
K
,
L
, {
a k i , l j }]
be an IM and let a k f , l g
=[
P
,
Q
, {
b p r , q s }]
be
its element. Then
A | ( a k f , l g )
= ( A [{ k f } , { l g } , { 0 }] ) a k f , l g ⊕[ P , L −{ l g } , { c x , l j }] ⊕ [ K −{ k f } , Q , { d k i , y }] ,
where for each t
P and for each l j
L
−{
l g }
,
c x , l j
=
a k f , l j
and for each k i
K
−{
k f }
and for each y
Q ,
d k i , y =
a k i , l g .
| (
We can give other representations of IMs A
| (
a k f , l g )
and A
a k f , l g )
, using other
operations defined over IMs .
The following equalities are valid.
Theorem 10 Let A
=[
K
,
L
, {
a k i , l j }]
be an IM and let a k f , l g
=[
P
,
Q
, {
b p r , q s }]
be
its element. Then
A
| (
a k f , l g ) =
pr K −{ k f } , L −{ l g } A
a k f , l g ,
| (
A
a k f , l g )
=
pr K −{ k f } , L −{ l g }
A
a k f , l g ⊕[
P
,
L
−{
l g } , {
c x , l j }] ⊕ [
K
−{
k f } ,
Q
, {
d k i , y }] ,
where for each x
P and for each l j
L
−{
l g }
,
c x , l j
=
a k f , l j
 
Search WWH ::




Custom Search