Information Technology Reference
In-Depth Information
(
A ( k 1 , l 1 ) ) ( k 2 , l 2 ) = (
A ( k 2 , l 2 ) ) ( k 1 , l 1 ) .
Third, let P
={
k 1 ,
k 2 ,...,
k s }⊆
K and Q
={
q 1 ,
q 2 ,...,
q t }⊆
L. Then, we
define the following three operations:
A
) = (...((
A
) ) ( k 2 , l ) )...) ( k s , l ) ,
(
P
,
l
(
k 1 ,
l
A
) = (...((
A
l 1 ) ) ( k , l 2 ) )...) ( k , l t ) ,
(
k
,
Q
(
k
,
A
) = (...((
A
) ) ( p 2 , Q ) )...) ( p s , Q ) = (. . . ((
A
) ) ( P , q 2 ) )...) ( P , q t ) .
(
P
,
Q
(
p 1
,
Q
(
P
,
q 1
Obviously,
A
) =
I
and
]]
A
( , ) =
A
.
(
K
,
L
Theorem 3
For every two IMs A
=[
K
,
L
, {
a k i , l j }] ,
B
=[
P
,
Q
, {
b p r , q s }]
:
A
d B fA
=
B ( P K , Q L ) .
Proof Let A
d B . Therefore, K
P and L
Q and for every k
K
,
l
L :
a k , l =
b k , l .
From the definition,
B ( P K , Q L ) = (...((
B ( p 1 , q 1 ) ) ( p 1 , q 2 ) )...) ( p r , q s ) ,
where p 1 ,
p 2 ,...,
p r
P
K , i.e., p 1 ,
p 2 ,...,
p r
P , and p 1 ,
p 2 ,...,
p r
K ,
and q 1 ,
q 2 ,...,
q s
Q
L , i.e., q 1 ,
q 2 ,...,
q s
Q , and q 1 ,
q 2 ,...,
q s
L .
Therefore,
B
) =[ P ( P K ), Q ( Q L ), { b k , l }] = [ K , L , { b k , l }] = [ K , L , { a k , l }] = A ,
(
P
K
,
Q
L
because by definition the elements of the two IMs, which are indexed by equal
symbols, coincide.
For the opposite direction we obtain, that if A
=
B
, then
(
P
K
,
Q
L
)
A
=
B
) d B
, =
B
.
(
P
K
,
Q
L
1.7 Operation “Projection” Over an
R
-IM,
(
0
,
1
)
-IM and L-IM
Let M
K and N
L . Then,
pr M , N A
=[
M
,
N
, {
b k i , l j }] ,
 
Search WWH ::




Custom Search