Biomedical Engineering Reference
In-Depth Information
3. H.C. Keong, M.R. Yuce, Analysis of a multi-access scheme and asynchronous transmit-only
UWB for Wireless Body Area Networks. The 31st annual international conference of the
IEEE engineering in medicine and biology society (EMBC'09), pp. 6906-6909, 2009
4. H.C. Keong, K.M. Thotahewa, M.R. Yuce, Transmit-only ultra wide band (UWB) body
sensors and collision analysis. IEEE Sens. J. 13, 1949-1958 (2013)
5. K.M. Silva, M.R Yuce, J.Y. Khan, Network topologies for dual band (UWB—transmit and
Narrow Band- receive) Wireless Body Area Network, in Proceedings of the ACM/IEEE Body
Area Networks (BodyNets), 7-8 Nov 2011
6. http://www.rfm.com/products/data/rx5500.pdf , 2013
7. http://www.mathworks.com , 2013
8. http://www.opnet.com , 2013
9. M.R. Yuce, Ho Chee Keong, M. Chae, Wideband communication for implantable and
wearable systems. IEEE Trans. Microw. Theory Tech. 57(2), 2597-2604 (2009)
10. A. Ridolfi, M.Z. Win, Ultrawide bandwidth signals as shot noise: a unifying approach. IEEE
J. Sel. Areas Commun. 24(4), 899-905 (2006)
11. A. Khaleghi, R. Chavez-Santiago, X. Liang, I. Balasingham, V.C.M. Leung, T.A. Ramstad,
On ultra wideband channel modeling for in-body communications, in 5th IEEE International
Symposium on Wireless Pervasive Computing, pp. 140-145, 2010
12. IEEE P802.15-02/240-SG3a, Empirically Based Statistical Ultra-Wideband Channel Model
13. IEEE P802.15-02/490r1-SG3a, Channel Modeling Sub-committee Report Final, February
2003
14. R.J. Punnoose, P.V. Nikitin, D.D. Stancil, Efficient simulation of ricean fading within a
packet simulator. IEEE Veh. Technol. Conf. 2, 764-767 (2000)
15. FCC 02-48 (First Report and Order), 2002
16. R.J. Fontana, E.A. Richley, Observations on low data rate, short pulse UWB systems. IEEE
international conference on ultra-wideband, pp. 334-338, 2007
17. FCC 05-58: Petition for waiver of the part 15 UWB regulations. Filed by the multi-band
OFDM Alliance Special Interest Group, ET Docket 04-352, March 11, 2005
18. H.
Chee
Keong,
M.R.
Yuce,
Transmit
only
UWB
body
area
network
for
medical
applications. Asia Pacific microwave conference, pp. 2200-2203, 2009
19. K. Witrisal, G. Leus, G.J.M. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme,
Noncoherent ultra-wideband systems. IEEE Signal Process. Mag. 26(4), 48, 66 (2009)
20. I. Guvenc, H. Arslan, S. Gezici, H. Kobayashi, Adaptation of two types of processing gains
for UWB impulse radio wireless sensor networks. IET Commun. 1(6), 1280, 1288 (2007)
21. IEEE-802.15.4-2006, Part 15.4: wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area networks (LR-WPANs). Standard,
IEEE
22. IEEE-802.15.4a-2007, Part 15.4: Wireless medium access control (MAC) and physical layer
(PHY) specifications for low-rate wireless personal area networks (LR-WPANs): amendment
to add alternate PHY. Standard, IEEE
23. J. Sun, Z. Wang, H. Wang, X. Zhang, Research on routing protocols based on ZigBee
network. Third international conference on intelligent information hiding and multimedia
signal processing, vol. 1, pp. 639-642, 2007
24. J.Y. Le Boudec, R. Merz, B. Radunovic, J. Widmer, DCCMAC: A decentralized MAC
protocol for 802.15.4a-Like UWB mobile Ad-Hoc networks based on dynamic channel
coding. Broadnets, 2004
25. L. Kynsijarvi, L. Goratti, R. Tesi, J. Iinatti, M. Hamalainen, Design and performance of
contention based MAC protocols in WBAN for medical ICT using IR-UWB, in IEEE 21st
International
Symposium
on
Personal,
Indoor
and
Mobile
Radio
Communications
Workshops, pp. 107-111, 26-30 Sept 2010
26. S. Ullah, M. Chen, K. Kwak, Throughput and delay analysis of IEEE 802.15.6-based CSMA/
CA protocol. J. Med. Syst. 36(6), 3875-3891 (2012)
Search WWH ::




Custom Search