Biomedical Engineering Reference
In-Depth Information
62. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science
1987;238:491-7.
63. Petrini P, Parolari C, Tanzi MC. Silk fibroin-polyurethane scaffolds for tissue engineering. J Mater Sci
Mater Med 2001;12:849-53.
64. Chiarini A, Petrini P, Bozzini S, Pra ID, Armato U. Silk fibroin/poly(carbonate)-urethane as a sub-
strate for cell growth: In vitro interactions with human cells. Biomaterials 2003;24:789-99.
65. Dal Pra I, Petrini P, Charini A, Bozzini S, Fare S, Armato U. Silk fibroin-coated three-dimensional
polyurethane scaffolds for tissue engineering: Interactions with normal human fibroblasts. Tissue
Eng 2003;9:1113-21.
66. Cai K, Yao K, Lin S, Yang Z, Li X, Xie H et al. Poly(d,l-lactic acid) surfaces modified by silk fibroin:
Efects on the culture of osteoblast in vitro . Biomaterials 2002;23:1153-60.
67. Cai K, Yao K, Cui Y, Yang Z, Li X, Xie H et  al. Influence of different surface modification treat-
ments on poly(d,l-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro .
Biomaterials 2002;23:1603-11.
68. Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL. Biomaterial coatings by stepwise deposition of silk
fibroin. Langmuir 2005;21:11335-41.
69. Wang X, Hu X, Daley A, Rabotyagova O, Cebe P, Kaplan DL. Nanolayer biomaterial coatings of silk
fibroin for controlled release. J Control Rel 2007;121:190-9.
70. Wang X, Zhang X, Castellot J, Herman I, Iafrati M, Kaplan DL. Controlled release from multilayer
silk biomaterial coatings to modulate vascular cell responses. Biomaterials 2008;29:894-903.
71. Pritchard EM, Szybala C, Boison D, Kaplan DL. Silk fibroin encapsulated powder reservoirs for
sustained release of adenosine. J Control Rel 2010;144:159-67.
72. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone
formation. J Biomed Mater Res 2001;54:139-48.
73. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V et al. Human bone marrow
stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A
2003;67:559-70.
74. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G. RGD-tethered silk sub-
strate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 2006;448:234-9.
75. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S et al. Parathyroid hormone exerts disparate
effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest
1997;99:2961-70.
76. Uzawa T, Hori M, Ejiri S, Ozawa H. Comparison of the effects of intermittent and continuous admin-
istration of human parathyroid hormone (1-34) on rat bone. Bone 1995;16:477-84.
77. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic pro-
tein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal
cells. J Biomed Mater Res A 2004;71:528-37.
78. Langer R, Vacanti JP. Tissue engineering. Science 1993;260:920-6.
79. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D. Bioreactor cultivation of osteochondral grafts.
Orthodont Craniofac Res 2005;8:209-18.
80. Nazarov R, Jin HJ, Kaplan DL. Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules
2004;5:718-26.
81. Tamada Y. New process to form a silk fibroin porous 3-D structure. Biomacromolecules 2005;6:3100-6.
82. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three dimensional aqueous-derived biomaterial scaf-
folds from silk fibroin. Biomaterials 2005;26:2775-85.
83. Meinel L, Karageorgiou V, Fajardo R, Snyder B, Shinde-Patil V, Zichner L et al. Bone tissue engineering
using human mesenchymal stem cells: Effects of scaffold material and medium flow. Ann Biomed
Eng 2004;32:112-22.
84. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B et al. Silk implants for the healing of
critical size bone defects. Bone 2005;37:688-98.
Search WWH ::




Custom Search