Environmental Engineering Reference
In-Depth Information
occurrence of the atmospheric greenhouse gases (GHGs), the main one being
water vapor (H 2 O) followed to a lesser extent by CO 2 , CH 4 , N 2 O, CFCs and so
on (Wigley 1988 , 1989 ; Charlson et al. 1989 ; Fisher et al. 1990 ; den Elzen et al.
1992 ; Kroeze and Reijnders 1992 ; Solomon and Daniel 1996 ; Kiehl and Trenberth
1997 ; Quaas et al. 2004 ; IPCC 2007a ; Velders et al. 2007 ; May 2008 ; Schmidt
et al. 2010 ; Zhang et al. 2011 ). A typical definition of global warming is an
increase of the global average temperatures at the interface between Earth's near
surface air and water. It is generally caused either by the absorption of long-wave
(or thermal) infrared radiation by the GHGs and other atmospheric constituents or
by high penetration of short-wave, e.g. ultraviolet (UV) radiation due to the deple-
tion of the stratospheric ozone layer caused by ozone depleting substances.
GHGs and other atmospheric constituents are substantially released by
increased soil respiration processes (Bradford et al. 2008 ; Bahn et al. 2010 ; Feng
et al. 2010 ), high agricultural activities in soils (Mosier et al. 2004 ; Robertson
and Grace 2004 ; Ambus and Robertson 2006 ; Smith et al. 2008 ), anthropogenic
processes (IPCC 2007a ; Sabine et al. 2004 ; Smith 2004 ; Archer 2005 ; Canadell
et al. 2007 ; Hofmann et al. 2009 ), deforestation (IPCC 2001 , 2007a ; Kreileman
and Bouwman 1994 ; van der Werf et al. 2009 ), photoinduced and microbial degra-
dation of aquatic organic matter (OM) including dissolved organic matter (DOM)
and particulate organic matter (POM) (Bozec et al. 2005 , 2006 ; Schiettecatte et al.
2006 , 2007 ; Borges et al. 2008 ; Omar et al. 2010 ; Ballaré et al. 2011 ; Zepp et al.
2011 ), and photoinduced and microbial degradation of OM in plants and soil envi-
ronments (Brandt et al. 2009 ; Rutledge et al. 2010 ).
On the other hand, global warming significantly affects various biogeochemi-
cal processes of natural waters, including changes in light cycle, increase of water
temperature (O'Reilly et al. 2003 ; Letelier et al. 2004 ; Huisman et al. 2006 ; Porcal
et al. 2009 ), enhancement of the photoinduced activity of aquatic DOM and OM
(Hiriart-Baer and Smith 2005 ; Molot et al. 2005 ; Johannessen et al. 2007 ; Mostofa
and Sakugawa 2009 ; Mostofa et al. 2009a , b , 2011 ), changes in the microbial pro-
cessing of aquatic DOM and OM (Norf et al. 2007 ; Vázquez-Domínguez et al.
2007 ; Falkowski and Oliver 2008 ; Peters 2008 ; Norf and Weitere 2010 ; Sarmento
et al. 2010 ; Sawicka et al. 2010 ), enhancement of photosynthesis(Mostofa et al.
2009b ; Marcoval et al. 2008 ; Zubkov and Tarran 2008 ; Beardall et al. 2009a , b ),
changes in the primary productivity (Huisman et al. 2006 ; Mostofa et al. 2009b ;
Baulch et al. 2005 ; Castle and Rodgers 2009 ; Davis et al. 2009 ), changes in the
aquatic DOM dynamics and global carbon cycles (Zepp et al. 2011 ; Porcal et al.
2009 ; Burns et al. 2006 ; Vuorenmaa et al. 2006 ; Sobek et al. 2007 ; Zhang et al.
2010 ), and changes in the nutrients cycle (Mostofa et al. 2009b ; Fu et al. 2005 ;
Minero et al. 2007 ; Stedmon et al. 2007a , b ; Sterner et al. 2008 ).
The effects of ambient levels of UV radiation (UV-B: 280-315 nm and UV-A:
315-400 nm) can alter both planktonic and benthic communities within the biota
of alpine lakes (Cabrera et al. 1997 ; Halac et al. 1997 ; Sommaruga et al. 1997 ,
1999a ; Vinebrooke and Leavitt 1998 ; Sommaruga and Garcia-Pichel 1999 ).
The impact of UV radiation may interact with other important environmental
changes affecting high-latitude and high-altitude lakes, such as acidification and
Search WWH ::




Custom Search