Environmental Engineering Reference
In-Depth Information
it is of 45-68 Gt C year 1 and from coastal vegetation it is of 1.9 Gt C year 1
(Longhurst et al. 1995 ; Box 2004 ; Haberl et al. 2007 ).
Since the development of techniques for Chl a detection in water in the decade
of 1930 and 1940s (Harvey 1934 , 1939 ), a number of research works has been pub-
lished to develop analytical methodologies (Richards and Thompson 1952 ; Parsons
and Strickland 1963 ; Jeffrey and Humphrey 1975 ), to elucidate Chl a origin (Fennel
and Boss 2003 ; Letelier et al. 2004 ; Huisman et al. 2006 ) and to understand its
photoinduced degradation into various pheopigments (Welschmeyer and Lorenzen
1985 ; Barlow et al. 1993 ; Stephens et al. 1997 ). An additional issue is the produc-
tion of autochthonous DOM by photoinduced degradation of Chl a or phytoplankton
biomass, under both photoinduced and microbial (bacterial) metabolism/assimi-
lation/respiration (Kirchman et al. 1991 , 1995 ; Tranvik 1993 ; Nelson et al. 1998 ,
2004 ; Hart et al. 2000 ; Parlanti et al. 2000 ; Carrillo et al. 2002 ; Rochelle-Newall and
Fisher 2002 ; Nieto-Cid et al. 2006 ; Mostofa et al. 2009 ; Zhang et al. 2009 ).
The spatial variability of the net primary productivity over the globe is sub-
stantially high, varying from about 1,000 g C m 2 for evergreen tropical rain for-
ests to less than 30 g C m 2 for deserts (Scurlock et al. 1999 ). On the other hand,
chlorophyll a (Chl a ) concentrations vary from 0.0 to 2,080 μ g L 1 in a variety
of natural waters. Such a variability in Chl a concentration can produce either a
surface/subsurface Chl a maximum (SCM) or a deep Chl a maximum (DCM) in
natural waters (Huisman et al. 1999 , 2006 ; Riley et al. 1949 ; Bainbridge 1957 ;
Steele and Yentsch 1960 ; Anderson 1969 ; Derenbach et al. 1979 ; Dortch 1987 ;
Viliˇi´ et al. 1989 ; Bjørnsen and Nielsen 1991 ; Donaghay et al. 1992 ; Huisman
and Weissing 1995 ; Djurfeldt 1994 ; Gentien et al. 1995 ; Odate and Furuya 1998 ;
Dekshenieks et al. 2001 ; Franks and Jaffe 2001 ; Klausmeier and Litchman 2001 ;
Diehl 2002 ; Rines et al. 2002 ; Yoshiyama and Nakajima 2002 ; Arístegui Ruiz
et al. 2003 ; Hodges and Rudnick 2004 ; Matondkar et al. 2005 ; Weston et al. 2005 ;
Lund-Hansen et al. 2006 ; Beckmann and Hense 2007 ; Hense and Beckmann 2008 ;
Hopkinson and Barbeau 2008 ; Whitehouse et al. 2008 ; Yoshiyama et al. 2009 ; Lu
et al. 2010 ; Martin et al. 2010 ; Ryabov et al. 2010 ; Velo-Suárez et al. 2010 ).
The high variation in Chl a content is generally used as a universal signature of
cyanobacteria (algae), or of phytoplankton bloom or eutrophication in a variety of
waters (Fielding and Seiderer 1991 ; Ondrusek et al. 1991 ; Williams and Claustre
1991 ; Millie et al. 1993 ; Jeffrey et al. 1999 ; Bianchi et al. 1993 , 2002 , Blanco et al.
2008 ; Kasprzak et al. 2008 ). Variations in Chl a concentrations or primary produc-
tion is entirely dependent on various environmental factors in natural waters, which
have been extensively discussed before (see also chapter Photosynthesis in Nature:
A New Look ”).
It has been found that Chl a bound to phytoplankton can be degraded by photoin-
duced and microbial processes, thereby producing a number of pigments and colour-
less organic compounds in natural waters (Welschmeyer and Lorenzen 1985 ; Barlow
et al. 1993 ; Stephens et al. 1997 ; Zhang et al. 2009 ; Bianchi et al. 2002 ; Schulte-Elte
et al. 1979 ; Falkowski and Sucher 1981 ; Pietta et al. 1981 ; Mantoura and Llewellyn
1983 ; Keely and Maxwell 1991 ; Nelson 1993 ; Sun et al. 1993 ; Rontani et al. 1995 ,
1998 , 2003 , 2011 ; Rontani and Marchand 2000 ; Yacobi et al. 1996 ; Cuny et al.
Search WWH ::




Custom Search