Information Technology Reference
In-Depth Information
3. Bartol, T., Land, B., Salpeter, E., Salpeter, M.: Monte carlo simulation of miniature
endplate current generation in the vertebrate neuromuscular junction. Biophys
J. 59(6), 1290-1307 (1991)
4. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing Principles and
Paradigms. Wiley Publishing (2011)
5. Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mowbray,
M.: Labs of the world, unite! Journal of Grid Computing 4(3), 225-246 (2006)
6. Dix, J., Hom, E., Verkman, A.: Fluorescence Correlation Spectroscopy Simulations
of Photophysical Phenomena and Molecular Interactions: A Molecular Dynamics-
Monte Carlo Approach. J. Phys. Chem. B 110(4), 1896-1906 (2006)
7. Elson, E.L.: Fluorescence correlation spectroscopy: Past, present, future. Biophys
J. 101(12), 2855-2870 (2011)
8. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-
Degree Compared. In: Grid Computing Environments Workshop, pp. 1-10 (2008)
9. Haustein, E., Schwille, P.: Ultrasensitive investigations of biological systems by
fluorescence correlation spectroscopy. Methods 29(2), 153-166 (2003)
10. Joseph, J., Fellenstein, C.: Grid Computing. Prentice Hall PTR, Upper Saddle
River (2003)
11. Kerr, R., Bartol, T., Kaminsky, B., Dittrich, M., Chang, J., Baden, S., Sejnowski,
T., Stiles, J.: Fast Monte Carlo simulation methods for biological reaction-diffusion
systems in solution and on surfaces. SIAM Journal on Scientific Computing 30(6),
3126-3149 (2008)
12. Lidke, D.S., Wilson, B.S.: Caught in the act: quantifying protein behaviour in living
cells. Trends in Cell Biology 19(11), 566-574 (2009)
13. Lippincott, J., Altan, N., Patterson, G.: Photobleaching and photoactivation:
following protein dynamics in living cells. Nat. Cell Biol. Suppl. (2003)
14. Martınez, E., Marian, J., Kalos, M., Perlado, J.: Synchronous parallel kinetic Monte
Carlo for continuum diffusion-reaction systems. J. Comp. Phys. 227(8), 3804-3823
(2008)
15. Meriney, S., Dittrich, M.: Organization and function of transmitter release sites at
the neuromuscular junction. The Journal of Physiology 591(13), 3159-3165 (2013)
16. Molnar Jr., F., Izsak, F., Meszaros, R., Lagzi, I.: Simulation of reaction-diffusion
processes in three dimensions using CUDA. Chemometrics and Intelligent Labora-
tory Systems 108(1), 76-85 (2011)
17. Nov, O., Anderson, D., Arazy, O.: Volunteer computing: A model of the fac-
tors determining contribution to community-based scientific research. In: 19th
Int. Conf. on World Wide Web, pp. 741-750 (2010)
18. Stiles, J.R., Bartol, T.M.: Monte Carlo methods for simulating realistic synaptic
microphysiology using MCell, ch. 4, pp. 87-127. CRC Press (2001)
19. Stiles, J.R., Van Helden, D., Bartol, T.M., Salpeter, E.E., Salpeter, M.M.: Minia-
ture endplate current rise times less than 100 microseconds from improved dual
recordings can be modeled with passive acetylcholine diffusion from a synaptic
vesicle. Proc. Natl. Acad. Sci. USA 93(12), 5747-5752 (1996)
20. van Zon, J., ten Wolde, P.: Simulating biochemical networks at the particle level
and in time and space: Green's function reaction dynamics. Phys. Rev. Lett. 94(12),
128103 (2005)
Search WWH ::




Custom Search