Biomedical Engineering Reference
In-Depth Information
ψ P
ψ M+1
ψ M
ψ 3
ψ 2
ψ 1
Figure 16.2 Restricted open shell HF
ν 1 M
ψ i ( r 1 ) h (1) ( r 1 i ( r 1 ) dτ 1 +
ψ i ( r 1 )
M
M
1
2 ν 1
ε el =
g ( r 1 , r 2 j ( r 2 ) dτ 1 2
ˆ
i
=
1
i
=
1
j
=
1
ψ i ( r 1 j ( r 1 ) g ( r 1 , r 2 i ( r 2 j ( r 2 ) dτ 1 2
+ ν 2
1
2
ψ u ( r 1 ) h (1) ( r 1 u ( r 1 ) dτ 1 +
ψ u ( r 1 ) g ( r 1 , r 2 v ( r 2 ) dτ 1 2
P
P
P
1
2 ν 2
u
=
M
+
1
u
=
M
+
1
v
=
M
+
1
ψ u ( r 1 v ( r 1 ) g ( r 1 , r 2 u ( r 2 v ( r 2 ) dτ 1 2
(16.21)
+ ν 1 ν 2 M
ψ i ( r 1 ) g ( r 1 , r 2 u ( r 2 ) dτ 1 2
P
i
=
1
u
=
M
+
1
ψ i ( r 1 u ( r 1 ) g ( r 1 , r 2 i ( r 2 u ( r 2 ) dτ 1 2
1
2
In the LCAO variation, we introduce n basis functions. We can collect the HF-LCAO
coefficients of the n 1 doubly occupied orbitals into columns of a matrix U 1 ( n
×
n 1 ) and the
coefficients of the n 2 singly occupied orbitals into columns of U 2 ( n
×
n 2 ) and define the
n
×
n density matrices
R 1 =
U 1 U 1
U 2 U 2
Repeating the analysis given for closed shell states gives
R 2 =
ν 1 Tr R 1 h 1 +
2 G 1
ν 2 Tr R 2 h 1 +
2 G 2
1
1
ε el =
+
(16.22)
Search WWH ::




Custom Search