Agriculture Reference
In-Depth Information
Hawkes, J.G. 1991. International work-shop on dynamic in-
situ conservation of wild relatives of major cultivated
plants: Summary and fi nal discussion and recommenda-
tions. Isr. J. Bot. 40:529-536.
Hedrick, P.W. 1986. Genetic polymorphism in heteroge-
neous environments: A decade later. Annu. Rev. Ecol.
Syst. 17:535-566.
Heslop-Harrison, J.S. 2000. RNA, genes, genomes and chro-
mosomes: Repetitive DNA sequences in plants. Chromo-
somes Today 13:45-56.
Heyn, C.C., and M. Waldman. 1992. In situ conversation of
plant with potential economic value. In R.P. Adams and
J.E. Adams (ed.) Conservation of plant genes: DNA
banking and in vitro biotechnology. Academic Press, Inc.,
San Diego, CA.
Hillman, G., and S. Colledge (ed.) 1998. The transition from
foraging to farming in southwest Asia. Proc. Int. Work-
shop, Groningen, The Netherlands. Sept. 1998.
Jakob, S.S., A. Meister, and F.R. Blattner. 2004. Consider-
able genome size variation of Hordeum species (Poaceae) is
linked to phylogeny, life form, ecology, and speciation
rates. Mol. Biol. Evol. 21:860-869.
Jiang, N., Z. Bao, X. Zhang, S.R. Eddy, and S.R. Wessler.
2004. Pack-MULE transposable elements mediate gene
evolution in plants. Nature 431:569-573.
Jiang, J., and B. Gill. 1994a. New 18S-26S ribosomal gene
loci: Chromosomal landmarks for the evolution of poly-
ploid wheats. Chromosoma 103:179-185.
Jiang, J., and B. Gill. 1994b. Different species-specifi c chro-
mosome translocations in Triticum timopheevii and T. tur-
gidum support the diphyletic origin of polyploid wheats.
Chromosome Res. 2:59-64.
Johnson, B.L., and H.S. Dhaliwal. 1976. Reproductive
isolation of Triticum boeoticum and Triticum urartu and
the origin of the tetraploid wheats. Am. J. Bot.
63:1088-1096.
Johnson, B.L., and H.S. Dhaliwal. 1978. Triticum urartu and
genome evolution in the tetraploid wheats. Am. J. Bot.
65:907-918.
Joppa, L.R., E. Nevo, and A. Beiles. 1995. Chromosome
translocations in wild populations of tetraploid emmer
wheat in Israel and Turkey. Theor. Appl. Genet.
91:713-719.
Karlin, S., and J.L. McGregor. 1972. Polymorphisms for
genetics and ecological systems with weak coupling. Theor.
Popul. Biol. 3:210-238.
Kashkush, K., M. Feldman, and A.A. Levy. 2002. Gene loss,
silencing and activation in a newly synthesized wheat allo-
tetraploid. Genetics 160:1651-1656.
Kawahara, T., and E. Nevo. 1996. Screening of spontaneous
major translocations in Israeli populations of Triticum
dicoccoides Koern. Wheat Information Serv. 83:28-
30.
Kawahara, T., E. Nevo, and A. Beiles. 1993. Frequencies of
translocations in Israeli populations of Triticum dicoccoides
Korn. p. 8020. Proc. Int. Botany Congr., XV, Yokohama,
Japan. 28 Aug.-3 Sept. 1993.
Kellogg, E.A., R. Appels, and R.J. Mason-Gamer. 1996.
When genes tell different stories: The diploid genera of
Triticeae (Gramineae). Syst. Bot. 21:321-347.
Kidwell, M.G., and D.R. Lisch. 2001. Perspective: Trans-
posable elements, parasitic DNA and genome evolution.
Evolution 55:1-24.
Kidwell, K., G. Shelton, V. DeMacon, M. McClendon, J.
Smith, J. Baley, and R. Higginbotham. 2002. Spring wheat
breeding and genetics. p. 24-26. In J. Burns and R. Veseth
(ed.) Field Day Proc., 2002: Highlights of research prog-
ress. Washington State University, Pullman, WA.
Kihara, H. 1924. Cytologische und genetische Studien bei
wichtigen Getreidearten mit besonderer Rücksicht auf
das Verhalten der Chromosomen und die Sterilität in
den bastarden. Mem. Coll. Sci. Kyoto Imp. Univ. Serv.
Bull. 1:1-200.
Kihara, H. 1944. Discovery of the DD-analyser, one of the
ancestors of Triticum vulgare (Japanese). Agric. Hort.
(Tokyo) 19:13-14.
Kimber, G., and M. Feldman. 1987. Wild wheats, an intro-
duction. p. 1-142. Special Report 353. College of Agricul-
ture, University of Missouri, Columbia, MO.
Kimber, G., and E.R. Sears. 1987. Evolution in the genus
Triticum and the origin of cultivated wheat. In E.G. Heyne,
(ed.) Wheat and wheat improvement. 2nd ed. ASA, CSSA,
SSSA, Madison, WI.
Kislev, M.E., D. Nadel, and I. Carmi. 1992. Epi-palaeolithic
(19 000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee,
Israel. Rev. Palaeobot. Palynol. 3:161-166.
Konarev, V.G., I.P. Gavrilyuk, N.K. Gubareva, and T.I.
Peneva. 1979. About nature and origin of wheat genomes
on the data of biochemistry and immunochemistry of grain
proteins. Cereal Chem. 56:272-278.
Lai, J., Y. Li, J. Messing, and H.K. Dooner. 2005. Gene
movement by Helitron transposons contributes to the hap-
lotype variability of maize. Proc. Natl. Acad. Sci. USA
102:9068-9073.
Lange, W., and G. Jochemsen. 1992. Use of the gene pools
of Triticum turgidum ssp. dicoccoides and Aegilops squarrosa
for the breeding of common wheat ( T. aestivum ), through
chromosome-doubled hybrids. Euphytica 59:197-212.
Leitch, I.J., and M.D. Bennett. 2004. Genome downsizing in
polyploid plants. Bot. J. Linn. Soc. 82:651-663.
Leitch, I.J., L. Hanson, K.Y. Lim, A. Kovarik, M.W. Chase,
J.J. Clarkson, and A.R. Leitch. 2008. The ups and downs
of genome size evolution in polyploid species of Nicotiana
(Solanaceae) Ann. Bot. 101:805-814.
Lelley, T., M. Stachel, H. Grausgruber, and J. Vollmann.
2000. Analysis of relationships between Aegilops tauschii
and the D genome of wheat utilizing microsatellites.
Genome 43:661-668.
Levy, A.A., and M. Feldman. 1987. Increase in grain protein
percentage in high-yielding common wheat breeding lines
by genes from wild tetraploid wheat. Euphytica
36:353-359.
Lev-Yadun, S., A. Gopher, and S. Abbo. 2000. The cradle
of agriculture. Science 288:1602-1603.
Li, Y.C., T. Fahima, A. Beiles, A.B. Korol, and E. Nevo.
1999. Microclimatic stress and adaptive DNA differentia-
tion in wild emmer wheat, Triticum dicoccoides . Theor.
Appl. Genet. 99:873-883.
Li, Y.C., T. Fahima, A.B. Korol, J.H. Peng, M.S. Röder,
V.M. Kirzhner, A. Beiles, and E. Nevo. 2000a. Microsatel-
Search WWH ::




Custom Search