Agriculture Reference
In-Depth Information
(Agarwal et al., 2008). Integration events were
confi rmed by both Southern and segregation
analysis, and were shown to be mainly single
copy. In an alternative approach, transformed
plants were obtained after piercing a region of the
embryonic apical meristem in imbibed seeds with
a needle that had been dipped in Agrobacterium
inoculum (Supartana et al., 2006). Transforma-
tion was confi rmed in the T 1 generation by PCR,
Southern analysis, and by isolation and sequence
analysis of wheat DNA fl anking the T-DNA
insertion sites. If the effi ciency of the in planta
transformation technologies can be enhanced,
they will provide a powerful tool for developing
functional genomics tools.
There is thus real potential for being able to
conduct large-scale structural and functional analy-
ses in wheat in the coming years. In addition to
having the sequence of all wheat genes available, the
wheat research community will have access to the
necessary functional genomics tools to elucidate
the function of the genes that are key to determin-
ing the agricultural importance of wheat. Detailed
knowledge about the action mechanisms in wheat
of genes identifi ed by QTL and association studies
as underlying specifi c traits, of genes shown in
model species to underlie particular pathways, and
of previously “unknown” genes annotated from
sequence data will provide a means for highly effi -
cient and targeted improvement of wheat.
Akhunov, E.D., A.W. Goodyear, S. Geng, et al. 2003b. The
organization and rate of evolution of wheat genomes are
correlated with recombination rates along chromosome
arms. Genome Res. 13:753-763.
Allouis, S., G. Moore, A. Bellec, R. Sharp, P. Faivre-
Rampant, K. Mortimer, S. Pateyron, T.N. Foote, S.
Griffi ths, M. Caboche, and B. Chalhoub. 2003. Construc-
tion and characterisation of a hexaploid wheat ( Triticum
aestivum L.) BAC library from the reference germplasm
'Chinese Spring'. Cereal Res. Commun. 31:331-338.
Alm, V., C. Fang, C.S. Busso, K.M. Devos, K. Vollan, Z.
Grieg, and O.A. Rognli. 2003. A linkage map of meadow
fescue ( Festuca pratensis Huds.) and comparative mapping
with other Poaceae species. Theor. Appl. Genet. 108:25-40.
Arondel, V., B. Lemieux, I. Hwang, S. Gibson, H.M.
Goodman, and C.R. Somerville. 1992. Map-based cloning
of a gene controlling omega-3-fatty-acid desaturation in
Arabidopsis. Science 258:1353-1355.
Barbazuk, W.B., J.A. Bedell, and P.D. Rabinowicz. 2005.
Reduced representation sequencing: A success in maize
and a promise for other plant genomes. BioEssays
27:839-848.
Bechtold, N., J. Ellis, and G. Pelletier. 1993. In-planta
Agrobacterium -mediated gene-transfer by infi ltration of
adult Arabidopsis thaliana plants. C. R. Acad. Sci.
316:1194-1199.
Bennett, M.D., and J.B. Smith. 1991. Nuclear DNA amounts
in angiosperms. Philos. Trans. R. Soc. Lond., Ser. B
334:309-345.
Bennetzen, J.L. 2000. Transposable element contributions
to plant gene and genome evolution. Plant Mol. Biol.
42:251-269.
Blanco, A., M.P. Bellomo, A. Cenci, C. De Giovanni, R.
D'Ovidio, E. Iacono, B. Laddomada, M.A. Pagnotta, E.
Porceddu, A. Sciancalepore, R. Simeone, and O.A.
Tanzarella. 1998. A genetic linkage map of durum
wheat. Theor. Appl. Genet. 97:721-728.
Bossolini, E., T. Wicker, P.A. Knobel, and B. Keller. 2007.
Comparison of orthologous loci from small grass genomes
Brachypodium and rice: Implications for wheat genomics
and grass genome annotation. Plant J. 49:704-717.
Botstein, D., R.L. White, M. Skolnick, and R.W. Davis.
1980. Construction of a genetic linkage map in man using
restriction fragment length polymorphisms. Am. J. Hum.
Genet. 32:314-331.
Boyko, E.V., K.S. Gill, L. Mickelson-Young, S. Nasuda, W.J.
Raupp, J.N. Ziegle, S. Singh, D.S. Hassawi, A.K. Fritz, D.
Namuth, N.L.V. Lapitan, and B.S. Gill. 1999. A high-density
genetic linkage map of Aegilops tauschii , the D-genome pro-
genitor of bread wheat. Theor. Appl. Genet. 99:16-26.
Brueggeman, R., N. Rostoks, D. Kudrna, A. Kilian, F. Han,
J. Chen, A. Druka, B. Steffenson, and A. Kleinhofs. 2002.
The barley stem rust-resistance gene Rpg1 is a novel
disease-resistance gene with homology to receptor kinases.
Proc. Natl. Acad. Sci. USA 99:9328-9333.
Budiman, M.A., S.B. Chang, S. Lee, T.J. Yang, H.B. Zhang,
H. de Jong, and R.A. Wing. 2004. Localization of jointless-
2 gene in the centromeric region of tomato chromosome
12 based on high resolution genetic and physical mapping.
Theor. Appl. Genet. 108:190-196.
REFERENCES
Agarwal, S., S. Loar, C. Steber, and J. Zale. 2008. Floral
transformation of wheat. In H. Jones and P. Shewry (ed.)
Methods in biotechnology. Humana Press, Totawa, NJ.
Ahn, S., J.A. Anderson, M.E. Sorrells, and S.D. Tanksley.
1993. Homoeologous relationships of rice, wheat and maize
chromosomes. Mol. Gen. Genet. 241:483-490.
Akbari, M., P. Wenzl, V. Caig, J. Carling, L. Xia, S.Y. Yang,
G. Uszynski, V. Mohler, A. Lehmensiek, H. Kuchel, M.
J. Hayden, N. Howes, P. Sharp, P. Vaughan, B. Rathmell,
E. Huttner, and A. Kilian. 2006. Diversity arrays technol-
ogy (DArT) for high-throughput profi ling of the hexaploid
wheat genome. Theor. Appl. Genet. 113:1409-1420.
Akhunov, E.D., A.R. Akhunova, A.M. Linkiewicz, et al.
2003a. Synteny perturbations between wheat homoeolo-
gous chromosomes caused by locus duplications and dele-
tions correlate with recombination rates. Proc. Natl. Acad.
Sci. USA 100:10836-10841.
Search WWH ::




Custom Search