Agriculture Reference
In-Depth Information
closely related species. Each of these resistance
genes has provided protection for a very small
subset of specifi c biotypes of aphids or Hessian
fl y. Consequently, multiple resistance genes are
needed to provide broad-spectrum protection
across multiple biotypes of pests that typically
constitute fi eld populations. The advent of
molecular markers associated with these resis-
tance genes will now allow breeders to more
effectively combine genes to provide protection
against pest populations with known biotypic
composition.
Success in wheat resistance to insect pests has
typically been short-lived due to the tremendous
inherent genetic diversity for virulence within
pest populations. Sources of durable resistance
may have to come from unrelated species of wheat
via genetic transformation.
2003. Breeding wheat for resistance to insects. Plant Breed.
Rev. 22:221-296.
Brewer, M.J., and N.C. Elliott. 2004. Biological control of
cereal aphids in North America and mediating effects of
host plant and habitat manipulations. Annu. Rev. Entomol.
49:219-242.
Burd, J.D., D.R. Porter, G.J. Puterka, S.D. Haley, and F.B.
Peairs. 2006. Biotypic variation among North American
Russian wheat aphid (Homoptera: Aphididae) populations.
J. Econ. Entomol. 99:1862-1866.
Burnett, P.A., and R.T. Plumb. 1998. Present status of con-
trolling Barley yellow dwarf virus. p. 448-458. In A.
Hadidi, R.K. Khetarpal, and H. Koganezawa (ed.) Plant
virus disease control. APS Press, St. Paul, MN.
Burton, R.L. 1986. Effect of greenbug (Homoptera: Aphidi-
dae) damage on root and shoot biomass of wheat seedlings.
J. Econ. Entomol. 79:633-636.
Carter, N.I., F.G. McLean, A.D. Watt, and A.F.G. Dixon.
1980. Cereal aphids: A case study and review. p. 271-348.
In H. Coaker (ed.) Advances in applied biology. Vol. 5.
Academic Press, New York.
Cheng, H.Z., S.Y. Zheng, Y.Y. Guo, S.Z. Zhao, and P.
Wang. 2004. The resistance of wheat aphids to several
insecticides. Henan Agric. Sci. 6:50-53.
Cox, T.S., and J.H. Hatchett. 1986. Genetic model for
wheat/Hessian fl y interactions: Strategies for deployment
of resistance genes in wheat cultivars. Environ. Entomol.
15:24-31.
Curtis, B.C., A.M. Schlehuber, and E.A. Wood, Jr. 1960.
Genetics of greenbug, Toxoptera graminum (Rond.),
resistance in two strains of common wheat. Agron. J.
52:599-602.
Dahms, R.G., T.H. Johnston, A.M. Schlehuber, and E.A.
Wood, Jr. 1955. Reaction of small-grain varieties and
hybrids to greenbug attack. Okla. Agric. Exp. Stn. Tech.
Bull. T-55, Stillwater.
Dubcovsky, J., A.J. Lukaszewski, M. Echaide, E.F. Antonelli,
and D.R. Porter. 1998. Molecular characterization of
two Triticum speltoides interstitial translocations carrying
leaf rust and greenbug resistance genes. Crop Sci.
38:1655-1660.
Dunn, B.L., B.F. Carver, C.A. Baker, and D.R. Porter.
2007. Rapid phenotypic assessment of bird cherry-oat
aphid resistance in winter wheat. Plant Breed.
126:240-243.
Dutoit, F. 1989. Components of resistance in three bread
wheat lines to Russian wheat aphid (Homoptera: Aphidi-
dae). J. Econ. Entomol. 82:1251-1253.
Elliott, N.C., and R.W. Kieckhefer. 2000. Response by
coccinellids to spatial variation in cereal aphid density.
Population Ecol. 42:81-90.
Flor, H.H. 1946. Genetics of pathogenicity in Melampsora
lini . J. Agric. Res. 73:335-357.
Forster, R.L. 1990. The 1985 barley yellow dwarf epidemic
in winter wheat involving barley yellow dwarf virus trans-
mitted by Schizaphis graminum and wheat streak mosaic.
p. 266-274. In P.A. Burnett (ed.) World perspectives on
barley yellow dwarf. CIMMYT, Mexico, D.F.
Foster, J.E., H. Ohm, F. Patterson, and P. Taylor. 1991.
Effectiveness of deploying single gene resistances in wheat
REFERENCES
Aalbersberg, Y.K., F. Dutoit, M.C. van der Westhuizen, and
P.H. Hewitt. 1987. Development rate, fecundity and lifes-
pan of apterae of the Russian wheat aphid, Diuraphis noxia
(Mordvilko) (Homoptera: Aphididae), under controlled
conditions. Bull. Entomol. Res. 77:629-635.
Anderson, K.G., and M.O. Harris. 2006. Does R gene resis-
tance allow wheat to prevent plant growth effects associ-
ated with Hessian fl y (Diptera: Cecidomyiidae) attack? J.
Econ. Entomol. 99:1842-1853.
Armstrong, J.S., M.R. Porter, and F.B. Peairs. 1991. Alter-
nate hosts of the Russian wheat aphid (Homoptera: Aphi-
didae). J. Econ. Entomol. 84:1691-1694.
Bailey, S.M., M.E. Irwin, G.E. Kampmeier, C.E. Eastman,
and A.D. Hewings. 1995. Physical and biological perturba-
tions: Their effect on the movement of apterous Rhopalo-
siphum padi (Homoptera: Aphididae) and localized spread
of barley yellow dwarf virus. Environ. Entomol.
24:24-33.
Barnes, H.F. 1956. Gall midges of economic importance: Vol.
VII. Gall midges of cereal crops. Crosby Lockwood & Son,
London.
Basky, Z., A. Fonagy, and B. Kiss. 2006. Baking quality of
wheat fl our affected by cereal aphids. Cereal Res. Commun.
34:1161-1168.
Basky, Z., and K.R. Hopper. 2000. Impact of plant density
and natural enemy exclosure on abundance of Diuraphis
noxia (Kurdjumov) and Rhopalosiphum padi (L.)
(Hom., Aphididae) in Hungary. J. Appl. Entomol.
124:99-103.
Berzonsky, W.A., H. Ding, S.D. Haley, M.O. Harris, R.J.
Lamb, R.I.H. McKenzie, H.W. Ohm, F.L. Patterson, F.
Peairs, D.R. Porter, R.H. Ratcliffe, and T.G. Shanower.
Search WWH ::




Custom Search