Biomedical Engineering Reference
In-Depth Information
[5] B. Frankenhaeuser, A. F. Huxley, “The action potential in the myelinated nerve
fiber of Xenopus laevis as computed on the basis of voltage clamp data,” J.
Physiol. , Vol. 171, pp. 302-315, 1964.
[6] E. Cocherova, “The effects of microwave radiation of nerve fibers,” Ph. D. Thesis,
Bratislava: Elec. Eng. Inf. Tech., 2001.
[7] L. A. Geddes, L. E. Baker, Principles of Applied Biomedical Instrumentation , 3rd
ed., New York: Wiley, 1989.
[8] S. M. Michaelson, J. C. Lin, Biological Effects and Health Implications of Radiofre-
quency Radiation , New York: Plenum, 1987.
[9] J. Thuery, Microwaves: Industrial, Scientific and Medical Applications , Boston, MA:
Artech House, 1992.
[10] C. Polk, E. Postow, Handbook of Biological Effects of Electromagnetic Fields , Boca
Raton, FL: CRC Press, 1996.
[11] A. Vander Vorst, F. Duhamel, “1990-1995 advances in investigating the interac-
tion of microwave fields with the nervous system,” in A. Rosen and A. Vander
Vorst (Eds.), Special Issue on Medical Applications and Biological Effects of
RF/Microwaves, IEEE Trans. Microwave Theory Tech., Vol. 44, No. 10, pp.
1898-1909, Oct. 1996.
[12] K. R. Foster, H. P. Schwan, “Dielectric properties of tissues,” in C. Polk and
E. Postow (Eds.), Handbook of Biological Effects of Electromagnetic Fields , Boca
Raton, FL: CRC Press, 1996.
[13] E. C. Jordan, Electromagnetic Waves and Radiating Systems , Englewood Cliffs, NJ:
Prentice-Hall, 1950.
[14] S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication
Electronics , New York: Wiley, 1965.
[15] A. Vander Vorst, Transmission, Propagation et Rayonnement , Brussels: De Boeck,
1995.
[16] G. Grosse, K. R. Foster, “Permittivity of a suspension of charged spherical parti-
cles in electrolyte solution,” J. Phys. Chem. , Vol. 91, p. 3073, 1987.
[17] G. Grosse, “Permittivity of a suspension of charged spherical particles in elec-
trolyte solution. II. Influence of the surface conductivity and asymmetry of the
electrolyte on the low and high frequency relaxations,” J. Phys. Chem. , Vol. 92, pp.
3905-3910, 1988.
[18] A. Vander Vorst, Electromagnétisme. Champs et Circuits , Brussels: De Boeck,
1994.
[19] H. P. Schwan, “Electrical properties of cells: Principles, some recent results and
some unresolved problems,” in W. S. Aldeman and D. Goldman (Eds.), The Bio-
physical Approach to Excitable Systems , New York: Plenum, 1981.
[20] E. D. Trautman, R. S. Newbower, “A practical analysis of the electrical conductiv-
ity of blood,” IEEE Trans. Biomed. Eng. , Vol. 30, p. 141, 1983.
[21] L. A. Geddes, L. E. Baker, “The specific resistance of biological material—a com-
pendium of data for the biomedical engineer and physiologist,” Med. Biol. Eng. ,
Vol. 5, p. 271, 1967.
[22] R. D. Stoy, K. R. Foster, H. P. Schwan, “Dielectric properties of tumor and normal
tissues at radio through microwave frequencies,” Phys. Med. Biol. , Vol. 27, p. 107,
1981.
Search WWH ::




Custom Search