Information Technology Reference
In-Depth Information
u 0( i ) K ( i ) x
if
K ( i ) x
>
u 0( i )
0
if
| K ( i ) x
|≤
u 0( i )
φ
(
K ( i ) x )=
(15.20)
u 0( i ) K ( i ) x if
K ( i ) x
<−
u 0( i )
,
,
i = 1
2
3, the closed-loop system (15.18) can be described by
x =( A ( z
,
x )+ B 1 K ) x + B 1 φ( K
x )+ B 2 ( z
,
x .
(15.21)
3
×
6 and define the set
Consider a matrix
G
6 ;
S ( u 0 )=
{
x
u 0
(
K G
) x
u 0 }.
(15.22)
The following lemma, issued from [12], can then be stated.
Lemma 15.1. Consider the nonlinearity
φ
(
K
x ) defined in (15.20). If x
S ( u 0 ) ,then
the relation
x ) M (
φ
(
K
φ
(
K
x )+
G
x )
0
(15.23)
×
3
3 .
is satisfied for any diagonal positive definite matrix M
Let us first write in a more tractable way matrices
x ), and therefore
the closed-loop system (15.21). In this sense, we define the matrices
A
( z
,
x ) and
B
2 ( z
,
z 1 Y 1 /
z 1 1 +( Y 1 ) 2
1
/
;
z 2 Y 2 /
z 2 1 +( Y 2 ) 2
B 1 ( z )=
1
/
z 3 Y 3 /
z 3 1 +( Y 3 ) 2
1
/
2 Y 1 00
02 Y 2 0
00 Y 3
1
/
z 1 00
01
; B 3 =
;
B 2 ( z )=
z 2 0
001
/
/
z 3
Y 1 /
Y 1 /
1
/
z 1
z 1
1
/
z 1
z 1
;
Y 2 /
B 4 ( z )=
1
/
z 2
z 2
0
0
Y 3 /
Y 3 /
1
/
z 3
z 3
1
/
z 3
z 3
0
1
/
z 1 0
1
/
z 1
e 1 00
0 e 2 0
00 e 3
; D ( e )=
;
B 5 ( z )=
0
1
/
z 2 00
/
/
0
1
z 3 01
z 3
= I 3 0 ;
= 0 I 3 .
R
C
Then, the closed-loop system reads
R B 1 ( z )
R T (2) B 2 ( z )
R T (3) ( B 3 + D ( e ))
x =(
C
+
R
+
B 1 K
+
R
) x +
B 1 φ
(
K
x )
R ( B 4 ( z )+ D ( e ) B 5 ( z ))
+
ω .
(15.24)
According to the notation previously specified, T (2) and T (3) respectively denote the
2th and 3th components of vector T . Furthermore, in (15.6) and (15.7), the con-
straints on the vector z = z 1 z 2 z 3
3 follow the description given in Figure
15.1. From relations (15.1), (15.2), (15.4) and (15.5), the depth of target points E 1
and E 3 can be expressed in terms of the depth z 2 of the central point E 2 :
Search WWH ::




Custom Search