Information Technology Reference
In-Depth Information
˜
˜
definitions of
Γ 1 and a k , k
Ξ K , let each convex cell
X s of
X
, s
Ξ S , be charac-
Ξ
Ξ
terized by n v ( s ) vectors v ( s , k v ) , k v
n v ( s ) ,and n z ( s ) vectors z ( s , k z ) , k z
n z ( s ) :
˜
: v ( s , k v ) x
z ( s , k z ) x
n
X s =
{
x
R
1
,
0
,
k v Ξ n v ( s ) ,
k z Ξ n z ( s ) }.
(10.42)
˜
Let the vectors e s a s b
“support” the boundaries
X s a s b
of adjacent polytopes, i.e.
˜
˜
˜
x : e s a s b x = 0
( s a ,
s b )
Π ,
X s a s b
X s a
X s b ⊂{
},
(10.43)
( n
+ n )
×
( n
+ n )
with
Π
as in (10.19). Define a constant matrix
E s a s b R
such that
Θ
Θ
˜
( x
, χ
)
X s a s b ×X χ , E s a s b φ 1 ( x
, χ
)= 0
.
(10.44)
1 e s a s b e s a s b Γ
A simple choice of
E
is
E
s a s b =
Γ
1 . However, less conservative re-
s a s b
sults can be obtained for other definitions of
E s a s b
depending on the choice of the
partition and the matrix
, χ), see end of Section 10.5.
The following steps enable the definition of LMI sufficient conditions for
Θ ( x
˜
de-
fined within Definition 10.6 to be a multicriteria basin of attraction for (10.4) subject
to (10.5):
E
} ×X χ , V s ( x
˜
•∀
s
Ξ S ,
( x
, χ
)
X s \{
0
, χ
)
>
0;
, χ)
} ×X χ , V s ( x
˜
•∀
s
Ξ S ,
( x
X s \{
0
, χ) <
0;
a k x
1 ;
˜
•∀
s
Ξ S ,
k
Ξ K ,
( x
, χ
)
X×X χ , ( V s ( x
, χ
)
1)
˜
•∀
s
Ξ S ,
j
Ξ J ,
( x
, χ
)
X s ×X χ ,
Z j ( x ) x
V s ( x
, χ
)
1
ζ j ;
v ( s , k v ) x
1
, ∀
k v Ξ n v ( s )
k z Ξ n z ( s )
Z j ( x ) x
ζ j ;
z ( s , k z ) x
0
, ∀
˜
•∀
( s a ,
s b )
Π , ∀
( x
, χ
)
X s a s b ×X χ ,
V s a ( x
, χ
)= V s b ( x
, χ
);
˜
V s a ( x
)= V s b ( x
•∀
( s a ,
s b )
Π , ∀
( x
, χ
)
X s a s b ×X χ ,
, χ
, χ
).
Theorem 10.2 (Multicriteria Analysis via PW-BQLFs). ˜
defined within Defini-
tion 10.6 is a multicriteria basin of attraction for the visual servo (10.4) subject
to the constraints (10.5) if the following LMIs on the matrices
E
{ P s } s Ξ S ,
{ L s } s Ξ S ,
{ W s } s Ξ S ,
{ Y s , k } s Ξ S , k Ξ K ,
{ F s , j } s Ξ S , j Ξ J ,
{ G s , j } s Ξ S , j Ξ J ,
{ M s a s b } ( s a , s b ) Π
, and
{ N s a s b } ( s a , s b ) Π
, on the positive scalars
{ η s , k } s Ξ S , k Ξ K ,
{ σ 0( s , j ) } s Ξ S , j Ξ J , and
{ τ 0( s , j ) } s Ξ S , j Ξ J , and on the nonnegative scalars
{ σ v ( s , j , k v ) } s Ξ S , j Ξ J , k v Ξ n v ( s ) ,
{ σ z ( s , j , k z ) } s Ξ S , j Ξ J , k z Ξ n z ( s ) ,
{ τ v ( s , j , k v ) } s Ξ S , j Ξ J , k v Ξ n v ( s ) ,
{ τ z ( s , j , k z ) } s Ξ S , j Ξ J , k z Ξ n z ( s ) ,
are in effect:
˜
Ψ 1 ( x
L s >
s
Ξ S , ∀
( x
, χ
)
∈V
(
X s ×X χ )
, P s +
L s Ψ 1 ( x
, χ
)+
, χ
)
0
,
(10.45)
( ˜
s
Ξ S , ∀
( x
, χ
)
∈V
X s ×X χ )
,
Ψ 2 ( x
W s <
M ( x , χ) (
P s )+
W s Ψ 2 ( x
, χ
)+
, χ
)
0
,
(10.46)
Search WWH ::




Custom Search