Biomedical Engineering Reference
In-Depth Information
163. Kvapilova M., et al. , An Evaluation of Creep Mechanisms in Ultrai ne-
Grained Metals, in Materials Structure & Micromechanics of Fracture, P.
Sandera, Editor 2011. p. 382-385.
164. Sklenicka V., J. Dvorak, and M. Svoboda, Creep in ultrai ne grained alu-
minium. Materials Science and Engineering a-Structural Materials Properties
Microstructure and Processing , 2004. 387: p. 696-701.
165. Luo H., L.C. Zhang, and L. Shaw, Multi-phase nanocrystalline Al alloy with
superior strength and modulus at elevated temperatures. Journal of Materials
Engineering and Performance , 2005. 14(4): p. 441-447.
166. Langdon T.G., Grain boundary sliding revisited: Developments in sliding
over four decades. Journal of Materials Science , 2006. 41(3): p. 597-609.
167. Sergueeva A.V., et al. , Cooperative grain boundary sliding in nanocrystalline
materials. Philosophical Magazine , 2006. 86(36): p. 5797-5804.
168. Liu F.C. and Z.Y. Ma, Contribution of grain boundary sliding in low-
temperature superplasticity of ultrai ne-grained aluminum alloys. Scripta
Materialia , 2010. 62(3): p. 125-128.
169. Ivanov K.V. and E.V. Naydenkin, Grain boundary sliding in ultrai ne grained
aluminum under tension at room temperature. Scripta Materialia , 2012.
66(8): p. 511-514.
170. Zeng X.H., Y.J. Li, and W. Blum, On coble creep in ultrarine-grained Cu.
Physica Status Solidi a-Applied Research , 2004. 201(14): p. R114-R117.
171. Kim W.J., On Coble creep in Mg-9Al-1Zn alloy with ultrai ne-grained
microstructure. Scripta Materialia , 2008. 58(8): p. 659-662.
172. Kim, W.J. and I.B. Park, Enhanced superplasticity and dif usional creep
in ultrai ne-grained Mg-6Al-1Zn alloy with high thermal stability. Scripta
Materialia , 2013. 68(3-4): p. 179-182.
173. Kral P., et al. , Ef ect of severe plastic deformation on creep behaviour of a
Ti-6Al-4V alloy. Journal of Materials Science , 2013. 48(13): p. 4789-4795.
174. Black J., Biological Performance of Materials - Fundamentals of
Biocompatibility , 4th Edition 2006, Boca Raton, Florida, USA: CRC Press.
175. Niinomi M., Metal Mater. Trans A 2002, 33 A, 477.
176. Boyer R., G. Welsch, E. Collings, Mater. Properties Handbook: Titanium
Alloys ASM International, 1998.
177. Stolyarov V. V., V. V. Latysh, R. Z. Valiev, Y. T. Zhu, T. C. Lowe, Investigations
and Appl. of Severe Plastic Deformation , Kluwer Academic Publishers 2000.
178. Zhu Y. T., T. C. Lowe, R. Z. Valiev, V. V. Stolyarov, V. V. Latysh, G. I. Raab, U.S
Patent 6399 215, 2002.
179. Latysh V. V., I. P. Semenova, G. H. Salimgareeva, I. V. Kandarov, Y. T. Zhu, T.
C. Lowe, R. Z. Valiev, Mater. Sci. Forum 2006, 503-504: p. 763.
180. Valiev RZ, Salimgareeva GKh, Polyakov AV, Khasanova LR, Multifunctional
properties of nanostructured titanium for biomedical application, in
Proceedings of International Symposium on Giant Straining Process for Advanced
Materials (GSAM2010) “Production of Mutifunctional Materials Using Severe
Plastic Deformation” (eds. Horita Z), Kyushu University Press, Fukuoka (2011).
Search WWH ::




Custom Search