Biomedical Engineering Reference
In-Depth Information
210. Dalla Pozza, E., et al. , Targeting gemcitabine containing liposomes to CD44
expressing pancreatic adenocarcinoma cells causes an increase in the antitu-
moral activity. Biochim Biophys Acta , 2013. 1828(5): p. 1396-404.
211. Madhankumar, A.B., et al. , Ei cacy of interleukin-13 receptor-targeted lipo-
somal doxorubicin in the intracranial brain tumor model. Mol Cancer h er ,
2009. 8(3): p. 648-54.
212. Ichikawa, K., et al. , Suppression of immune response by antigen-modii ed
liposomes encapsulating model agents: a novel strategy for the treatment of
allergy. J Control Release , 2013. 167(3): p. 284-9.
213. Murata, M., et al. , Surface modii cation of liposomes using polymer-wheat
germ agglutinin conjugates to improve the absorption of peptide drugs by
pulmonary administration. J Pharm Sci , 2013. 102(4): p. 1281-9.
214. Biswas, S., et al. , Liposomes loaded with paclitaxel and modii ed with novel
triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mito-
chondria and demonstrate enhanced antitumor ef ects in vitro and in vivo. J
Control Release , 2012. 159(3): p. 393-402.
215. Patel, N.R., et al. , Mitochondria-targeted liposomes improve the apoptotic
and cytotoxic action of sclareol. J Liposome Res , 2010. 20(3): p. 244-9.
216. Koshkaryev, A., et al. , Targeting of lysosomes by liposomes modii ed with
octadecyl-rhodamine B. J Drug Target , 2011. 19(8): p. 606-14.
217. Brandwijk, R.J., et al. , Anginex-conjugated liposomes for targeting of angio-
genic endothelial cells. Bioconjug Chem , 2007. 18(3): p. 785-90.
218. Han, S.Y., et al. , Gene transfer using liposome-complexed adenovirus seems to
overcome limitations due to coxsackievirus and adenovirus receptor-dei ciency
of cancer cells, both in vitro and in vivo. Exp Mol Med , 2008. 40(4): p. 427-34.
219. Meng, S., et al. , Enhanced antitumor ef ect of novel dual-targeted paclitaxel
liposomes. Nanotechnology , 2010. 21(41): p. 415103.
220. Murase, Y., et al. , A novel DDS strategy, “dual-targeting”, and its application
for antineovascular therapy. Cancer Lett , 2010. 287(2): p. 165-71.
221. Saul, J.M., A.V. Annapragada, and R.V. Bellamkonda, A dual-ligand approach
for enhancing targeting selectivity of therapeutic nanocarriers. J Control
Release , 2006. 114(3): p. 277-87.
222. Takara, K., et al. , Size-controlled, dual-ligand modii ed liposomes that target
the tumor vasculature show promise for use in drug-resistant cancer therapy.
J Control Release , 2012. 162(1): p. 225-32.
223. Takara, K., et al. , Design of a dual-ligand system using a specii c ligand and
cell penetrating peptide, resulting in a synergistic ef ect on selectivity and
cellular uptake. Int J Pharm , 2010. 396(1-2): p. 143-8.
224. Chen, C.-H., et al. , Evaluation of Multi-Target and Single-Target Liposomal
Drugs for the Treatment of Gastric Cancer. Bioscience, Biotechnology, and
Biochemistry , 2008. 72(6): p. 1586-1594.
225. Ma, K., et al. , Development of a successive targeting liposome with multi-
ligand for ei cient targeting gene delivery. J Gene Med , 2011. 13(5): p.
290-301.
Search WWH ::




Custom Search