Environmental Engineering Reference
In-Depth Information
13. Yang, X.Y., Wolcott, A., Wang, G.M., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z.,
Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting.
Nano Letters 2009 , 9 , (6), 2331-2336.
14. Zhang, J., Bang, J.H., Tang, C.C., Kamat, P.V. Tailored TiO 2 -SrTiO 3 heterostructure
nanotube arrays for improved photoelectrochemical performance. ACS Nano 2010 , 4 ,
387-395.
15. Banerjee, S., Mohapatra, S.K., Misra, M. Synthesis of TaON nanotube arrays by sono-
electrochemical anodization followed by nitridation: A novel catalyst for photoelectro-
chemical hydrogen generation from water. Chemical Communications 2009 , 46 ,
7137-7139.
16. Ito, S., Thampi, K.R., Comte, P., Liska, P., Gratzel, M. Highly active meso-microporous
TaON photocatalyst driven by visible light. Chemical Communications 2009 , 2 ,
268-270.
17. Ma, S.S.K., Hisatomi, T., Maeda, K., Moriya, Y., Domen, K. Enhanced water oxidation
on Ta 3 N 5 photocatalysts by modification with alkaline metal salts. Journal of the Ameri-
can Chemical Society 2012 , 134 , 19993-19996.
18. Sun, J.W., Liu, C., Yang, P.D. Surfactant-free, large-scale, solution-liquid-solid growth of
gallium phosphide nanowires and their use for visible-light-driven hydrogen production
from water reduction. Journal of the American Chemical Society 2011 , 133 ,
19306-19309.
19. Zhang, R.Q., Liu, X.M., Wen, Z., Jiang, Q. Prediction of silicon nanowires as photocata-
lysts for water splitting: band structures calculated using density functional theory.
Journal of Physical Chemistry C 2011 , 115 , 3425-3428.
20. Wang, F.Y., Yang, Q.D., Xu, G., Lei, N.Y., Tsang, Y.K., Wong, N.B., Ho, J.C. Highly
active and enhanced photocatalytic silicon nanowire arrays. Nanoscale 2011 , 3 ,
3269-3276.
21. Hoang, S., Berglund, S.P., Hahn, N.T., Bard, A.J., Mullins, C.B. Enhancing visible light
photo-oxidation of water with TiO 2 nanowire arrays via cotreatment with H 2 and NH 3 :
synergistic effects between Ti 3+ and N. Journal of the American Chemical Society 2012 ,
134 , 3659-3662.
22. Chen, X., Liu, L., Yu, P.Y., Mao, S.S. Increasing solar absorption for photocatalysis with
black hydrogenated titanium dioxide nanocrystals. Science 2011 , 331 , 746-750.
23. Thompson, T.L., Yates, J.T. Surface science studies of the photoactivation of TiO 2 -new
photochemical processes. Chemical Reviews 2006 , 106 , 4428-4453.
24. Lu, X.H., Wang, G.M., Xie, S.L., Shi, J.Y., Li, W., Tong, Y.X., Li, Y. Efficient photocata-
lytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical Communica-
tions 2012 , 48 , 7717-7719.
25. Wang, G.M., Ling, Y.C., Wang, H.Y., Yang, X.Y., Wang, C.C., Zhang, J.Z., Li, Y.
Hydrogen-treated WO 3 nanoflakes show enhanced photostability. Energy & Environmen-
tal Science 2012 , 5 , 6180-6187.
26. Tabata, M., Maeda, K., Higashi, M., Lu, D.L., Takata, T., Abe, R., Domen, K. Modified
Ta3N5 powder as a photocatalyst for O-2 Evolution in a two-step water splitting system
with an iodate/iodide shuttle redox mediator under visible light. Langmuir 2010 , 26 ,
9161-9165.
Search WWH ::




Custom Search