Biomedical Engineering Reference
In-Depth Information
[27]
Kohaar, I., et al., “TNFalpha-308G/A Polymorphism as a Risk Factor for HPV Associated
Cervical Cancer in Indian Population,” Cell Oncol., Vol. 29, 2007, pp. 249-256.
[28]
Brodie,
S.
G.,
et
al.,
“Multiple
Genetic
Changes
Are
Associated
with
Mammary
Tumorigenesis
in
Brca1
Conditional
Knockout
Mice,”
Oncogene,
Vol.
20,
2001,
pp. 7514-7523.
[29]
Carrasco, D. R., et al., “High-Resolution Genomic Profiles Define Distinct Clinico-
Pathogenetic Subgroups of Multiple Myeloma Patients,” Cancer Cell, Vol. 9, 2006,
pp. 313-325.
[30]
Bell, D. R., and Van Zant, G., “Stem Cells, Aging, and Cancer: Inevitabilities and Out-
comes,” Oncogene, Vol. 23, 2004, pp. 7290-7296.
[31]
Cowell, J. K., and Nowak, N. J., “High-Resolution Analysis of Genetic Events in Cancer
Cells Using Bacterial Artificial Chromosome Arrays and Comparative Genome Hybridiza-
tion,” Adv. Cancer Res., Vol. 90, 2003, pp. 91-125.
[32]
Snijders, A. M., et al., “Assembly of Microarrays for Genome-Wide Measurement of DNA
Copy Number,” Nat. Genet., Vol. 29, 2001, pp. 263-264.
[33]
Nowak, N. J., et al., “Genome-Wide Aberrations in Pancreatic Adenocarcinoma,” Cancer
Genet. Cytogenet., Vol. 161, 2005, pp. 36-50.
[34]
Shankar, G., et al., “aCGHViewer: A Generic Visualization Tool for aCGH Data,” Cancer
Inform., Vol. 2, 2006, pp. 36-43.
[35]
Bustin, S. A, “Absolute Quantification of mRNA Using Real-Time Reverse Transcription
Polymerase Chain Reaction Assays,” J. Mol. Endocrinol., Vol. 25, 2000, pp. 169-193.
[36]
Lee, L. G., Connell, C. R., and Bloch, W., “Allelic Discrimination by Nick-Translation PCR
with Fluorogenic Probes,” Nucleic Acids Res., Vol. 21, 1993, pp. 3761-3766.
[37]
Livak, K. J., et al., “Oligonucleotides with Fluorescent Dyes at Opposite Ends Provide a
Quenched Probe System Useful for Detecting PCR Product and Nucleic Acid Hybridiza-
tion,” PCR Methods Appl., Vol. 4, 1995, pp. 357-362.
[38]
Pfaffl, M. W., “A New Mathematical Model for Relative Quantification in Real-Time
RT-PCR,” Nucleic Acids Research., Vol. 29, 2001, p. 45.
[39]
Livak, K. J., and Schmittgen, T. D., “Analysis of Relative Gene Expression Data Using
Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method,” Methods, Vol. 25,
2001, pp. 402-408.
[40]
Sofi Ibrahim, M., et al., “Real-Time PCR Assay to Detect Smallpox Virus,” J. Clin.
Microbiol., Vol. 41, 2003, pp. 3835-3839.
[41]
Huletsky, A., et al., “New Real-Time PCR Assay for Rapid Detection of Methicillin-Resis-
tant Staphylococcus aureus Directly from Specimens Containing a Mixture of Staphylo-
cocci,” J. Clin. Microbiol., Vol. 42, 2004, pp. 1875-1884.
[42]
Svenstrup, H. F., et al., “Development of a Quantitative Real-Time PCR Assay for Detec-
tion of Mycoplasma genitalium,” J. Clin. Microbiol., Vol. 43, 2005, pp. 3121-3128.
[43]
(2006). Making the most of microarrays. Nat Biotechnol 24, 1039.
[44]
Canales, R. D., et al., “Evaluation of DNA Microarray Results with Quantitative Gene
Expression Platforms,” Nat. Biotechnol., Vol. 24, 2006, pp. 1115-1122.
[45]
Frueh, F. W., “Impact of Mircoarray Data Quality on Genomic Data Submissions to the
FDA,” Nat. Biotechnol., Vol. 24, 2006, pp. 1105-1107
[46]
Guo, L., et al., “Rat Toxicogenomic Study Reveals Analytical Consistency Across
Mircoarray Platforms,” Nat. Biotechnol., Vol. 24, 2006, pp. 1162-1169.
[47]
Patterson, T. A., et al., “Performance Comparison of One-Color and Two-Color Platforms
within the MircoArray Quality Control (MAQC) Project,” Nat. Biotechnol., Vol. 24, 2006,
pp. 1140-1150.
[48]
Shi, L., et al., “The MicroArray Quality Control (MAQC) Project Shows Inter- and
Intraplatform Reproducibility of Gene Expression Measurements,” Nat. Biotechnol.,
Vol. 24, 2006, pp. 1151-1161.
Search WWH ::




Custom Search