Biomedical Engineering Reference
In-Depth Information
[64]
Feng, S., et al., “Immobilized Zirconium Ion Affinity Chromatography for Specific Enrich-
ment of Phosphopeptides in Phosphoproteome Analysis,” Mol. Cell Proteomics , Vol. 6,
2007, pp. 1656-1665.
[65]
Nuhse, T., Yu, K., and Salomon, A., “Isolation of Phosphopeptides by Immobilized Metal
Ion Affinity Chromatography,” Curr. Protoc. Mol. Biol., Chapter 18, 2007, Unit 18.13.
[66]
Cantin, G. T., et al., “Optimizing TiO2-Based Phosphopeptide Enrichment for Automated
Multidimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry,”
Anal. Chem. , Vol. 79, 2007, pp. 4666-4673.
[67]
Mikesh, L. M., et al., “The Utility of ETD Mass Spectrometry in Proteomic Analysis,”
Biochim. Biophys. Acta , Vol. 1764, 2006, pp. 1811-1822.
[68]
Zhang, H., et al., “Identification and Quantification of N-linked Glycoproteins Using
Hydrazide Chemistry, Stable Isotope Labeling and Mass Spectrometry,” Nat. Biotechnol. ,
Vol. 21, 2003, pp. 660-666.
[69]
Kaji, H., et al., “Mass Spectrometric Identification of N-linked Glycopeptides Using
Lectin-Mediated Affinity Capture and Glycosylation Site-Specific Stable Isotope Tagging,”
Nat. Protoc. , Vol. 1, 2006, pp. 3019-3027.
[70]
Carlson, D. M., “Structures and Immunochemical Properties of Oligosaccharides Isolated
from Pig Submaxillary Mucins,” J. Biol. Chem., Vol. 243, 1968, pp. 616-626.
[71]
Kaji, H., et al., “Lectin Affinity Capture, Isotope-Coded Tagging and Mass Spectrometry to
Identify N-Linked Glycoproteins,” Nat. Biotechnol. , Vol. 21, 2003, pp. 667-672.
[72]
Wuhrer, M., et al., “Glycoproteomics Based on Tandem Mass Spectrometry of
Glycopeptides,” J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. , Vol. 849, 2007,
pp. 115-128.
[73]
Uhlen, M., and Ponten, F., “Antibody-Based Proteomics for Human Tissue Profiling,” Mol.
Cell Proteomics , Vol. 4, 2005, pp. 384-393.
[74]
Cretich, M., et al., “Protein and Peptide Arrays: Recent Trends and New Directions,”
Biomol. Eng. , Vol. 23, 2006, pp. 77-88.
[75]
Sanchez-Carbayo, M., “Antibody Arrays: Technical Considerations and Clinical Applica-
tions in Cancer,” Clin. Chem. , Vol. 52, 2006, pp. 1651-1659.
[76]
Gorelik, E., et al., “Multiplexed Immunobead-Based Cytokine Profiling for Early Detection
of Ovarian Cancer,” Cancer Epidemiol. Biomarkers Prev. , Vol. 14, 2005, pp. 981-987.
[77]
Zeh, H. J., et al., “Multianalyte Profiling of Serum Cytokines for Detection of Pancreatic
Cancer,” Cancer Biomark. , Vol. 1, 2005, pp. 259-269.
[78]
Ray, S., et al., “Classification and Prediction of Clinical Alzheimer's Diagnosis Based on
Plasma Signaling Proteins,” Nat. Med. , Vol. 13, 2007, pp. 1359-1362.
[79]
Casiano, C. A., Mediavilla-Varela, M., and Tan, E. M., “Tumor-Associated Antigen Arrays
for
the
Serological
Diagnosis
of
Cancer,”
Mol.
Cell
Proteomics ,
Vol.
5,
2006,
pp. 1745-1759.
[80]
Zhang, W., and Chait, B. T., “ProFound: An Expert System for Protein Identification Using
Mass
Spectrometric
Peptide
Mapping
Information,”
Anal.
Chem. ,
Vol.
72,
2000,
pp. 2482-2489.
[81]
Perkins, D. N., et al., “Probability-Based Protein Identification by Searching Sequence
Databases
Using
Mass
Spectrometry
Data,”
Electrophoresis ,
Vol.
20,
1999,
pp. 3551-3567.
[82]
Hauskrecht, M., et al., “Feature Selection for Classification of SELDI-TOF-MS Proteomic
Profiles,” Appl. Bioinformatics , Vol. 4, 2005, pp. 227-246.
[83]
Bellew, M., et al., “A Suite of Algorithms for the Comprehensive Analysis of Complex Pro-
tein
Mixtures
Using
High-Resolution
LC-MS,”
Bioinformatics ,
Vol.
22,
2006,
pp. 1902-1909.
[84]
Li, X. J., et al., “A Software Suite for the Generation and Comparison of Peptide Arrays
from Sets of Data Collected by Liquid Chromatography-Mass Spectrometry,” Mol. Cell
Proteomics , Vol. 4, 2005, pp. 1328-1340.
Search WWH ::




Custom Search