Biomedical Engineering Reference
In-Depth Information
55. Knaack D, Goad ME, Aiolova M, Rey C, Tofi ghi A,
Chakravarthy P, Lee DD (1998) A resorbable calcium
phosphate bone substitute. J Biomed Mater Res B
Appl Biomater 43:399-409.
56. Komath M, Varma HK (2003) Development of a fully
injectable calcium phosphate cement for orthopedic
and dental applications. Bull Mater Sci 26:415-422.
57. Kuo CK, Ma PX (2001) Ionically crosslinked alginate
hydrogels as scaffolds for tissue engineering: Part 1.
Structure, gelation rate and mechanical properties.
Biomaterials 22:511-521.
58. Larsson S, Bauer TW (2002). Use of injectable calcium
phosphate cement for fracture fi xation: a review. Clin
Orthop Relat Res 395:23-32.
59. Laurencin CT, Khan Y (2005) Bone graft substitute
materials. www.emedicine.com
60. Leach JB, Bivens KA, Patrick Jr CW, Schmidt CE
(2003) Photocrosslinked hyaluronic acid hydrogels:
natural, biodegradable tissue engineering scaffolds.
Biotechnol Bioeng 82:578-589.
61. Lee DS, Shim MS, Kim SW, Lee H, Park I, Chang T
(2001) Novel thermoreversible gelation of biodegrad-
able PLGA-block-PEO-block-PLGA triblock copoly-
mers in aqueous solution. Macromol Rapid Commun
22:587-592.
62. Lee KY, Mooney DJ (2001) Hydrogels for tissue engi-
neering. Chem Rev 101:1869-1879.
63. LeGeros RZ (1988) Calcium phosphate materials
in restorative dentistry: a review. Adv Dent Res
2:164-183.
64. Luginbuehl V, Wenk E, Koch A, Gander B, Merkle
HP, Meindel L (2005) Insulin-like growth factor I-
releasing alginate-tricalcium phosphate composites
for bone regeneration. Pharm Res 22:940-950.
65. Luo Y, Kirker KR, Prestwich GD (2000) Cross-linked
hyaluronic acid hydrogel fi lms: new biomaterials for
drug delivery. J Control Release 69:169-184.
66. Ma PX (2004) Scaffolds for tissue fabrication. Materi-
a ls Today, May, pp 30-40.
67. Mahr M, Bartle GB, Bite U, Clay R, Kasperbauer JL,
Holmes JM (2000) Norian craniofacial repair system
bone cement for the repair of craniofacial skeletal
defects. Ophthal Plast Reconstr Surg 16:393-398.
68. Mallapragada KS, Narasimhan B, eds (2002) Inject-
able polymeric biomaterials. Special issue. Biomate-
rials 23:4305-4333.
69. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL
(2004) Bioinert, biodegradable and injectable poly-
meric matrix composites for hard tissue replacement:
state of the art and recent developments. Composites
Sci and Technol 64:789-817.
70. Minoura N, Aiba S-I, Gotoh Y, Tsukada M, Imai Y
(1995) Attachment and growth of cultured fi broblast
cells on silk protein matrices. J Biomed Mater Res
29:1215-1221.
71. Mortensen K, Pedersen JS (1993) Structural study
on the micelle formation of poly(ethylene oxide)-
poly(propylene oxide)-poly(ethylene oxide) triblock
copolymer in aqueous solution. Macromolecules
26:805-812.
72. Motta A, Fambri L, Migliaresi C (2002) Regenerated
silk fi broin fi lms: thermal and dynamic mechanical
analysis. Macromol Chem Physics 203:1658-1665.
73. Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M,
Giardino R (2004) Fibroin hydrogels for biomedical
applications: preparation, characterization and in
vitro cell culture studies. J Biomater Sci Polym Ed
15:851-864.
74. Motta A, Migliaresi C, Lloyd AW, Denyer SP, Santin
M (2002) Serum protein adsorption on silk fi broin
fi bres and membranes: surface opsonization and
binding strength. J Bioact Compact Polym 17:23-35.
75. Muzarelli R (1973) Chitosan. In: Muzarelli R, ed.
Natural Chelating Polymers. Oxford: Pergamon
Press, pp 14 4 -176.
76. Nakayama OS, Matsuda T (2001) Thermoresponsive
artifi cial extracellular matrix for tissue engineering:
hyaluronic acid biconjugated with poly(N-
isoproylacrylamide) grafts. Biomacromolecules 2:
856-863.
77. Nguyen H, Qian JJ, Bhatnagar RS, Li S (2003)
Enhanced cell attachment and osteoblastic activity
by P-15 peptide coated matrix in hydrogels. Biochem
Biophys Res Commun 311:179-186.
78. Nguyen KT, West JL (2002) Photopolymerizable
hydrogels for tissue engineering applications. Bio-
materials 23:4307-4314.
79. Osborne JF, Newesely H (1980) The materials science
of calcium phosphate ceramics. Biomaterials
1:108-111.
80. Otsuka M, Nakahigashi Y, Matsuda Y, Fox JL, Higuchi
WI (1994) A novel skeletal drug delivery system
using self-setting calcium phosphate cement 7. Effect
of biological factors on indomethacin release from
the cement loaded on bovine bone. J Pharm Sci
83:1569-1573.
81. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos
AG (2005) Delivery of TGF- β 1 and chondrocytes
via injectable, biodegradable hydrogels for cartil-
age tissue engineering applications. Biomaterials
26:7095-7103.
82. Payne RG, McGonigle S, Yaszemski MJ, Yasko AW,
Mikos AG (2002) Development of an injectable in situ
crosslinkable, degradable polymer carrier for osteo-
genic cell populations. Part 3. Proliferation and
differentiation of encapsulated marrow stromal
osteoblasts cultured on crosslinking poly(propylene
fumarate). Biomaterials 23:4381-4387.
83. Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F,
Verbavatz JM, Alonso MJ (1998) Protein encapsula-
tion within polyethylene glycol-coated nanospheres.
I. Physiochemical characterization. J Biomed Mater
Res 42:45-54.
84. Ratier A, Freche M, Lacout JL, Rodriguez F (2004)
Behavior of an injectable calcium phosphate cement
with added tetracycline. Int J Pharm 274:261-268.
85. Ratner BD, Bryant SJ (2004) Biomaterials: where we
have been and where we are going. Annu Rev Biomed
Eng 6:41-75.
86. Santin M, Denyer SP, Lloyd AW, Motta A (2002)
Domain-driven binding of fi brin(ogen) onto silk fi broin
biomaterials. J Bioact Compat Polym 17:195-208.
87. Santin M, Motta A, Freddi G, Cannas M (1999) In
vitro evaluation of the infl ammatory potential of the
silk fi broin. J Biomed Mater Res 46:382-389.
88. Schnettler R, Stahl JP, Alt V, Pavlidis T, Dingeldein E,
Wenisch S (2004) Calcium phosphate-based bone
substitutes. Eur J Trauma 30:219-229.
89. Seong J-Y, Jun YJ, Jeong B, Sohn YS (2005) New
thermogelling poly(organophosphazines) with
methoxypoly(ethylene glycol) and oligopeptide as
side groups. Polymer 46:5075-5081.
Search WWH ::




Custom Search