Environmental Engineering Reference
In-Depth Information
92. Spear, J., L. Figueroa, and B. Honeyman. 1999. Modeling the Removal of Uranium U(VI)
from Aqueous Solutions in the Presence of Sulfate Reducing Bacteria. Environmental
Science and Technology 33 : 2667-2675.
93. Hau, H. H., and J. A. Gralnick. 2007. Ecology and biotechnology of the genus Shewanella.
Annual Reviews of Microbiology 61 : 237-258.
94. Majors, P., J. McLean, G. Pinchuk, J. Fredrickson, Y. Gorby, K. Minard, and R. Wind. 2005.
NMR methods for in situ biofilm metabolism studies. Journal of Microbiological Methods
62 : 337-344.
95. McLean, J., P. Majors, C. Reardon, C. Bilskis, S. Reed, M. Romine, and J. Fredrickson. 2008.
Investigation of structure and metabolism within Shewanella oneidensis MR-1 biofilms.
Journal of Microbiological Methods 74 : 47-56.
96. Teal, T., D. Lies, B. Wold, and D. Newman. 2006. Spatiometabolic stratification of
Shewanella oneidensis biofilms. Applied and Environmental Microbiology 72 : 7324-7330.
97. Ross, D., S. S. Ruebush, S. Brantley, R. Hartshorne, T. Clarke, D. Richardson, and M.
Tien. 2007. Characterization of protein-protein interactions involved in iron redcution by
Shewanella oneidensis MR-1. Applied and Environmental Microbiology 73 : 5797-5808.
98. Shi, L., T. Squier, J. Zachara, and J. Fredrickson. 2007. Respiration of metal (hydr)oxides
by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Molecular
Microbiology 65 : 12-20.
99. Schwalb, C., S. Chapman, and G. Reid. 2002. The membrane-bound tetrahaem c-type
cytochrome CymA interacts directly with the soluble fumarate reducatase in Shewanella.
Biochemical Society Transactions 30 : 658-662.
100. Beliaev, A., D. Saffarini, J. McLaughlin, and D. Hunnicutt. 2001. MtrC, an outer membrane
decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1.
Molecular Microbiology 39 : 722-730.
101. Gorby, Y., S. Yanina, J. McLean, K. Rosso, D. Moyles, A. Dohnalkova, T. Beveridge,
I. Chang, B. Kim, K. Kim, D. Culley, S. Reed, M. Romine, D. Saffarini, E. Hill, L. Shi,
D. Elias, D. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. Nealson, and
J. Fredrickson. 2006. Electrically conductive bacterial nanowires produced by Shewanella
oneidensis strain MR-1 and other microorganisms. PNAS 103 : 11358-11363.
102. Lies, D., M. Hernandez, A. Kappler, R. Mielke, J. Gralnick, and D. Newman. 2005.
Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance
and by direct contact under conditions relevant for biofilms. Applied and Environmental
Microbiology 71 : 4414-4426.
103. Van der Zee, F., and F. Cervantes. 2009. Impact and application of electron shuttles on
the redox (bio)transformation of contaminants: a review. Biotechnology Advances 27 :
256-277.
104. Hernandez, M., A. Kappler, and D. Newman. 2004. Phenazines and other redox-active
antibiotics promote microbial mineral reduction. Applied and Environmental Microbiology
70 : 921-928.
105. Gu, B., H. Yan, P. Zhou, and D. Watson. 2005. Natural humics impact uranium bioreduction
and oxidation. Environmental Science and Technology 39 : 5268-5275.
106. Marsili, E., D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond. 2008.
Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the
National Academy of Sciences of the United States of America 105 : 3968-3973.
107. von Canstein, H., J. Ogawa, S. Shimizu, and J. Lloyd. 2008. Secretion of flavins
by Shewanella species and their role in extracellular electron transfer. Applied and
Environmental Microbiology 74 : 615-623.
108. Komlos, J., A. Peacock, R. Kukkadapu, and P. Jaffe. 2008. Long-term dynaimics of uranium
reduction/reoxidation under low sulfate conditions. Geochimica et Cosmochimica Acta 72 :
3603-3615.
109. Moreels, D., G. Crosson, C. Garafola, D. Monteleone, S. Taghavi, J. Fitts, and D. van der
Lelie. 2008. Microbial community dynamics in uranium contaminated subsurface sediments
Search WWH ::




Custom Search