Environmental Engineering Reference
In-Depth Information
54. Jones K.E., Campbell P.K., and Normann R.A. (1992) A glass/silicon composite intracortical
electrode array. Ann. Biomed. Eng. , 20, 423-437.
55. Lee J.-H., Jang A., Myers R., Bhadri P., Timmons W., Beyette F., Bishop P.L., and Papautsky
I. (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction
potentials. Sens. Actuators B , 115, 220-226.
56. Jang A., Lee J.-H., Bhadri P., Kumar S., Beyette F., Timmons W., Papautsky, I., and Bishop
P.L. (2005) Miniaturized redox potential probe for in situ environmental monitoring. Environ.
Sci. Technol. , 39, 6191-6197.
57. Lee J.-H., Lim T.-S., Seo Y., Bishop P.L., and Papautsky I. (2007) Needle-type dissolved
oxygen microelectrode array sensors for in situ measurements. Sens. Actuators B , 128,
179-185.
58. Lee J.-H., Seo Y., Lim T.-S., Bishop P.L., and Papautsky I. (2007) Integrated microelectrode
array sensor for in situ oxidation reduction potential and dissolved oxygen measurements.
Environ. Sci. Technol. , 41, 7857-7863.
59. Lee J.-H., Lee W. H., Bishop P.L., and Papautsky I. (2009) Cobalt coated needle-type micro-
electrode array sensor for in situ monitoring of phosphate. J. Micromech. Microeng. , 19,
025022.
60. Lee W. H., Lee J.-H., Bishop P.L., and Papautsky I. (2009) Biological application of MEMS
microelectrode array sensors for direct measurement of phosphate in the enhanced biological
phosphorous removal process. Water Environ. Res. , accepted October 2008.
61. Srinivasan P., Beyette F.R., and Papautsky I. (2004) Micromachined arrays of cantilevered
glass probes. Appl. Opt. , 43(4), 776-782.
62. Lee J.-H., Jang A., Bhadri P., Kumar S., Beyette F., Timmons W., Bishop P., and Papautsky
I. (2005) Microelectrode arrays for in situ environmental monitoring. Transducers '05 , Seoul,
Korea, June 5-9.
63. Bendikova T.A., Miserendinob S., Taib Y.-C., and Harmon T.C. (2007) A parylene-protected
nitrate selective microsensor on a carbon fiber cross section. Sens. Actuators B , 123,
127-134.
64. Wang Z., Ou Y., Lu T.-M., and Koratkar N. (2007) Wetting and electrowetting properties of
carbon nanotube templated parylene films. J. Phys. Chem. B , 111(17), 4296-4299.
65. ORP Theory; Van London-pHoenix Company, Houston, TX; http://www.vl-pc.com/
orptheory.html, accessed 01/22/09.
66. ASTMD1498, Standard practice for oxidation-reduction potential of water, American Society
for Testing and Materials (ASTM).
67. Lu R. and Yu T. (2002) Fabrication and evaluation of an oxygen microelectrode applicable to
environmental engineering and science. J. Environ. Eng. Sci. , 1, 225-235.
68. Davies P.W. and Brink F. (1942) Microelectrodes for measuring local oxygen tension in
animal tissues. Rev. Sci. Instrum. , 13, 524-533.
69. McGuyer J.C., Vasile M.J., and Schubert R.W. (1997) Modeling a micromanufactured open
recess-tip oxygen microelectrode. The 16th Southern Biomedical Engineering Conference,
Biloxi, MS. New York, April 4-6.
70. Schneiderman G. and Goldstick T.K. (1978) Oxygen electrode design criteria and perfor-
mance characteristics: recessed cathode. J. Appl. Physiol ., 45(1), 145-154.
71. Xiao D., Yuan H.-Y., Li J., and Yu R.-Q. (1995) Surface-modified cobalt-based sensor as a
phosphate-sensitive electrode. Anal. Chem. , 67, 288-291.
72. Meruva R.K. and Meyerhoff M.E. (1996) Mixed potential response mechanism of cobalt
electrodes toward inorganic phosphate. Anal. Chem. , 68, 2022-2026.
73. Engblom S.O. (1999) Determination of inorganic phosphate in a soil extract using a cobalt
electrode. Plant Soil , 206, 173-179.
74. Wang J. and Bishop P. (2005) Development of a phosphate ion-selective microelectrode and
its use in studies of the enhanced biological phosphorus removal (EBPR) process. Environ.
Technol. , 26, 381-388.
Search WWH ::




Custom Search