Environmental Engineering Reference
In-Depth Information
30. Zhang T.C. and Pang H. (1999) Applications of microelectrode techniques to measure pH and
oxidation-reduction potential in rhizosphere soil. Environ. Sci. Technol. , 33, 1293-1299.
31. Wightman R.M. (2006) Probing cellular chemistry in biological systems with microelec-
trodes. Science , 311, 1570-1574.
32. Zoski C.G.
(2002) Ultramicroelectrodes: design,
fabrication,
and characterization.
Electroanalysis , 14(15), 1041-1051.
33. Ramamoorthy R., Dutta P.K., and Akbar S.A. (2003) Oxygen sensors: materials, methods,
designs and applications. J. Mater. Sci. , 38, 4271-4282.
34. Wang J. (2000) In situ electrochemical monitoring: from remote sensors to submersible
microlaboratories. Lab. Rob. Autom. , 12, 178-182.
35. Li B. and Bishop P. (2004) Micro-profiles of activated sludge floc determined using
microelectrodes. Wa t e r R e s ., 38, 1248-1258.
36. Fu Y., Jiang H., and Bishop P. (1994) An inhibition study of the effect of azo dyes on
bioactivity of biofilms. Water Sci. Technol. , 29(7), 365-372.
37. Zhang T. and Bishop P. (1994) Density, porosity and pore structure of biofilms. Wa t e r R e s .,
28, 2267-2277.
38. Zhang T., Fu Y., and Bishop P. (1994) Competition in biofilms. Water Sci. Technol. , 29,
263-270.
39. Glud R.N., Ramsing N.B., Gundersen J.K., and Klimant I. (1996) Planar optrodes: a new tool
for fine scale measurements of two-dimensional O 2 distribution in benthic communities. Mar.
Ecol. Prog. Ser. , 140(1-3), 217-226.
40. Bishop P. and Yu T. (1999) A microelectrode study of redox potential change in biofilms.
Water Sci. Technol. , 39(7), 179-185.
41. Zhang T.C. and Bishop P.H. (1994a) Evaluation of tortuosity factors and effective diffusivities
in biofilms. Wa t e r R e s . , 28(11), 2279-2287.
42. Luther G.W. III, Glazer B.T., Hohmann L., Popp J.I., Taillefert M., Rozan T.F., Brendel P.J.,
Thebergea S.M., and Nuzziod D.B. (2001) Sulfur speciation monitored in situ with solid
state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments,
microbial mats and hydrothermal vent waters. J. Environ. Monit. , 3, 61-66.
43. Linsenmeier R.A. and Yancey C.M. (1987) Improved fabrication of double-barreled recessed
cathode O 2 microelectrodes. J. Appl. Physiol ., 63, 2554-2557.
44. Warburton P.R., Sawtelle R.S., Watson A. and Wang A.Q. (2001) Failure prediction for a
galvanic oxygen sensor. Sens. Actuators B , 72, 197-203.
45. Pang H. and Zhang T.C. (1998) Fabrication of redox potential microelectrodes for studies in
vegetated soils or biofilm systems. Environ. Sci. Technol. , 32, 3646-3652.
46. Kovacs G.T.A. (1998) Micromachined transducers sourcebook , McGraw Hill, Boston, MA.
47. Ahn C.H., Choi J.-W., Beaucage G., Nevin J.H., Lee J.-B., Puntambekar A., and Lee J.Y.
(2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc. IEEE ,
92(1), 154-173.
48. Vespoorte E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis , 23,
677-712.
49. Kricka L. (2001) Microchips, microarrays, biochips, and nanochips: personal laboratories for
the 21st century. Clin. Chim. Acta , 307, 219-223.
50. Bergveld P. (2003) Thirty years of ISFETOLOGY What happened in the past 30 years and
what may happen in the next 30 years. Sens. Actuators B , 88, 1-20.
51. Fofonoff T.A., Martel S.M., Hatsopoulos N.G., Donoghue J.P., and Hunter I.W. (2004)
Microelectrode array fabrication by electrical discharge machining and chemical etching.
IEEE Trans. Biomed. Electron. , 51, 890-895.
52. Motta P.S. and Judy J.W. (2005) Multielectrode microprobes for deep-brain stimulation fab-
ricated with a customizable 3-D electroplating process. IEEE Trans. Biomed. Electron. , 52,
923-933.
53. Takeuchi S., Suzuki T., Mabuchi K., and Fujita H. (2004) 3D flexible multichannel neural
probe array. J. Micromech. Microeng. , 14, 104-107.
Search WWH ::




Custom Search