Environmental Engineering Reference
In-Depth Information
87. Sun Y, Wang M, Gong X, Seo JH, Hsu BBY, Wudl F, Heeger AJ (2011) Polymer bulk
heterojunction solar cells: function and utility of inserting a hole transport and electron
blocking layer into the device structure. J Mater Chem 21:1365-1367
88. Sgobba V, Guldi DM (2008) Carbon nanotubes as integrative materials for organic
photovoltaic devices. J Mater Chem 18:153-157
89. Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and
associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano
Lett 7:1973-1979
90. Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Silva SRP (2009) Oxidised carbon
nanotubes as solution processable, high work function hole-extraction layers for organic
solar cells. Org Electron 10:388-395
91. Kim JS, Park JH, Lee JH, Jo J, Kim D-Y, Cho K (2007) Control of the electrode work
function and active layer morphology via surface modification of indium tin oxide for high
efficiency organic photovoltaics. Appl Phys Lett 91:112111-112113
92. Hau SK, Yip H-L, Leong K, Jen AK-Y (2009) Spraycoating of silver nanoparticle
electrodes for inverted polymer solar cells. Org Electron 10:719-723
93. Zeng W, Wu H, Zhang C, Huang F, Peng J, Yang W, Cao Y (2007) Polymer light-emitting
diodes with cathodes printed from conducting ag paste. Adv Mater 19:810-814
94. Zhao DW, Liu P, Sun XW, Tan ST, Ke L, Kyaw AKK (2009) An inverted organic solar cell
with an ultrathin ca electron-transporting layer and MoO3 hole-transporting layer. Appl
Phys Lett 95:3-153304
95. Zhou Y, Cheun H, Postcavage WJ Jr, Fuentes-Hernandez C, Kim S-J, Kippelen B (2010)
Inverted organic solar cells with ITO electrodes modified with an ultrathin Al2O3 buffer
layer deposited by atomic layer deposition. J Mater Chem 20:6189-6194
96. White MS, Olson DC, Shaheen SE, Kopidakis N, Ginley DS (2006) Inverted bulk-
heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl
Phys Lett 89:3-143517
97. Sun YM, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells
integrated
with
a low temperature-annealed
sol-gel-derived ZnO
film as
an electron
transport layer. Adv Mater 23:1679-1683
98. Yang TB, Cai WZ, Qin DH, Wang EG, Lan LF, Gong X, Peng JB, Cao Y (2009) Solution-
processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted
device structure. J Phys Chem C 114:6849-6853
99. Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis SA, Brabec CJ (2006)
Highly efficient inverted organic photovoltaics using solution based titanium oxide as
electron selective contact. Appl Phys Lett 89:3-233517
100. Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Interface modification for highly
efficient organic photovoltaics. Appl Phys Lett 92:3-093303
101. Oh H, Krantz J, Litzov I, Stubhan T, Pinna L, Brabec CJ (2011) Comparison of various sol-
gel derived metal oxide layers for inverted organic solar cells. Sol Energy Mater Sol Cells
95:2194-2199
102. Stubhan T, Oh H, Pinna L, Krantz J, Litzov I, Brabec CJ (2011) Inverted organic solar cells
using
a
solution
processed
aluminum-doped
zinc
oxide
buffer
layer.
Org
Electron
12:1539-1543
103. Hau SK, Yip H-L, Baek NS, Zou J, O'Malley K, Jen AKY (2008) Air-stable inverted
flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer.
Appl Phys Lett 92:253301-253303
104. Chua L-L, Zaumseil J, Chang J-F, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005)
General observation of n-type field-effect behaviour in organic semiconductors. Nature
434:194-199
105. Hau SK, Yip HL, Ma H, Jen AKY (2008) High performance ambient processed inverted
polymer
solar
cells
through
interfacial
modification
with
a
fullerene
self-assembled
monolayer. Appl Phys Lett 93:3-233304
Search WWH ::




Custom Search