Environmental Engineering Reference
In-Depth Information
27. Huang J, Xu Z, Yang Y (2007) Low-work-function surface formed by solution-processed
and thermally deposited nanoscale layers of cesium carbonate. Adv Funct Mater 17:1966-
1973
28. Huang JS, Hou W-J, Li J-H, Li G, Yang Y (2006) Improving the power efficiency of white
light-emitting diode by doping electron transport material. Appl Phys Lett 89:133509
29. Li G, Chu CW, Shrotriya V, Huang J, Yang Y (2006) Efficient inverted polymer solar cells.
Appl Phys Lett 88:253503
30. Chen FC, Wu JL, Yang SS, Hsieh KH, Chen WC (2008) Cesium carbonate as a functional
interlayer for polymer photovoltaic devices. J Appl Phys 103:103721
31. Wu CI, Lin CT, Chen YH, Chen MH, Lu YJ, Wu CC (2006) Electronic structures and
electron-injection mechanisms of cesium-carbonate-incorporated cathode structures for
organic light-emitting devices. Appl Phys Lett 88:152104
32. Chen MH, Wu CI (2008) The roles of thermally evaporated cesium carbonate to enhance
the electron injection in organic light emitting devices. J Appl Phys 104:113713
33. Liao HH, Chen LM, Xu Z, Li G, Yang Y (2008) Highly efficient inverted polymer solar cell
by low temperature annealing of Cs2CO3 interlayer. Appl Phys Lett 92:3-173303
34. O'Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized
colloidal tio2 films. Nature 353:737-740
35. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem
Photobiol, C 1:1-21
36. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New architecture for
high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical
spacer. Adv Mater 18:572-576
37. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K,
Heeger
AJ
(2009)
Bulk
heterojunction
solar
cells
with
internal
quantum
efficiency
approaching 100%. Nat Photonics 3:297-303
38. Park M-H, Li J-H, Kumar A, Li G, Yang Y (2009) Doping of the metal oxide nanostructure
and its influence in organic electronics. Adv Funct Mater 19:1241-1246
39. Roest AL, Kelly JJ, Vanmaekelbergh D, Meulenkamp EA (2002) Staircase in the electron
mobility of a ZnO quantum dot assembly due to shell filling. Phys Rev Lett 89:036801
40. Yip H-L, Hau SK, Baek NS, Ma H, Jen AKY (2008) Polymer solar cells that use self-
assembled-monolayer- modified ZnO/metals as cathodes. Adv Mater 20:2376-2382
41. Gilot J, Barbu I, Wienk MM, Janssen RAJ (2007) The use of ZnO as optical spacer in
polymer solar cells: Theoretical and experimental study. Appl Phys Lett 91:113520-113523
42. Monson TC, Lloyd MT, Olson DC, Lee Y-J, Hsu JWP (2008) Photocurrent enhancement in
polythiophene- and alkanethiol-modified ZnO solar cells. Adv Mater 20:4755-4759
43. Salomon A, Berkovich D, Cahen D (2003) Molecular modification of an ionic
semiconductor-metal interface: ZnO/molecule/Au diodes. Appl Phys Lett 82:1051-1053
44. Yip HL, Hau SK, Baek NS, Jen AKY (2008) Self-assembled monolayer modified ZnO/
metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells. Appl Phys Lett
92:3-193313
45. Zhang F, Ceder M, Inganäs O (2007) Enhancing the photovoltage of polymer solar cells by
using a modified cathode. Adv Mater 19:1835-1838
46. Huang F, Wu H, Cao Y (2010) Water/alcohol soluble conjugated polymers as highly
efficient electron transporting/injection layer in optoelectronic devices. Chem Soc Rev
39:2500-2521
47. Hoven CV, Garcia A, Bazan GC, Nguyen T-Q (2008) Recent applications of conjugated
polyelectrolytes in optoelectronic devices. Adv Mater 20:3793-3810
48. Luo J, Wu HB, He C, Li AY, Yang W, Cao Y (2009) Enhanced open-circuit voltage in
polymer solar cells. Appl Phys Lett 95:043301-043303
49. He C, Zhong CM, Wu HB, Yang RQ, Yang W, Huang F, Bazan GC, Cao Y (2010) Origin
of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using
conjugated polyelectrolytes. J Mater Chem 20:2617-2622
Search WWH ::




Custom Search