Environmental Engineering Reference
In-Depth Information
history of the development of the HSCs, we could find that the PCEs of HSCs have
increased all the way. Despite the slow increasing rate of PCE, the trend is obvious
and much higher efficiencies are expected upon the further understanding of the
device physics and the development of nanofabrication techniques.
References
1. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye-sensitized solar cells.
Chem Rev 110(11):6595-6663. doi: 10.1021/Cr900356p
2. Thompson BC, Frechet JMJ (2008) Organic photovoltaics—polymer-fullerene composite
solar cells. Angew Chem Int Edit 47(1):58-77. doi: 10.1002/anie.200702506
3. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar
cells. Adv Mater 21(13):1323-1338. doi: 10.1002/adma.200801283
4. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP (2010) Polymer-
fullerene
bulk-heterojunction
solar
cells.
Adv
Mater
22(34):3839-3856.
doi: 10.1002/
adma.200903697
5. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Pechy P, Gratzel M (2007) Fabrication
of
screen-printing
pastes
from
TiO2
powders
for
dye-sensitised
solar
cells.
Prog
Photovoltaics 15(7):603-612. doi: 10.1002/Pip.768
6. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar
cells:
model
studies,
manufacture
and
operational
stability
studies.
J
Mater
Chem
19(30):5442-5451. doi: 10.1039/B823001c
7. Krebs FC, Tromholt T, Jorgensen M (2010) Upscaling of polymer solar cell fabrication
using full roll-to-roll processing. Nanoscale 2(6):873-886. doi: 10.1039/B9nr00430k
8. Greenham NC, Peng X, Alivisatos AP (1996) Charge separation and transport in
conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence
quenching and photoconductivity. Phys Rev B 54(24):17628
9. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science
295(5564):2425-2427
10. Sun BQ, Marx E, Greenham NC (2003) Photovoltaic devices using blends of branched
CdSe
nanoparticles
and
conjugated
polymers.
Nano
Lett
3(7):961-963.
doi: 10.1021/
Nl0342895
11. Liu JS, Tanaka T, Sivula K, Alivisatos AP, Frechet JMJ (2004) Employing end-functional
polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar
cells. J Am Chem Soc 126(21):6550-6551. doi: 10.1021/Ja0489184
12. Gur I, Fromer NA, Chen CP, Kanaras AG, Alivisatos AP (2007) Hybrid solar cells with
prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals.
Nano Lett 7(2):409-414. doi: 10.1021/Nl062660t
13. Kang Y, Kim D (2006) Well-aligned CdS nanorod conjugated polymer solar cells. Sol
Energy Mater Sol C 90(2):166-174. doi: 10.1016/j.solmat.2005.03.001
14. Wang L, Liu YS, Jiang X, Qin DH, Cao Y (2007) Enhancement of photovoltaic
characteristics using a suitable solvent in hybrid polymer/multiarmed CdS nanorods solar
cells. J Phys Chem C 111(26):9538-9542. doi: 10.1021/Jp0715777
15. Leventis HC, King SP, Sudlow A, Hill MS, Molloy KC, Haque SA (2010) Nanostructured
hybrid polymer-inorganic solar cell active layers formed by controllable in situ growth of
semiconducting sulfide networks. Nano Lett 10(4):1253-1258. doi: 10.1021/Nl903787j
16. Coakley KM, Liu YX, McGehee MD, Frindell KL, Stucky GD (2003) Infiltrating
semiconducting polymers into self-assembled mesoporous titania films for photovoltaic
applications. Adv Funct Mater 13(4):301-306. doi: 10.1002/adfm.200304361
Search WWH ::




Custom Search