Environmental Engineering Reference
In-Depth Information
27. Koster LJ (2005) Origin of the light intensity dependence of the short-circuit current of
polymer/fullerene solar cells. Appl Phys Lett 87(20):203502
28. Lenes
M
(2006)
Thickness
dependence
of
the
efficiency
of
polymer:
fullerene
bulk
heterojunction solar cells. Appl Phys Lett 88(24):243502
29. Shrotriya V (2006) Effect of self-organization in polymer/fullerene bulk heterojunctions on
solar cell performance. Appl Phys Lett 89(6):063505
30. Brabec CJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L,
Hummelen JC (2001) Origin of the open circuit voltage of plastic solar cells. Adv Funct
Mater 11(5):374-380
31. Parker I (1994) Carrier tunneling and device characteristics in polymer light-emitting diodes.
J Appl Phys 75(3):1656
32. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006)
Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion
efficiency. Adv Mater 18(6):789-794
33. Mihailetchi V (2003) Cathode dependence of the open-circuit voltage of polymer: fullerene
bulk heterojunction solar cells. J Appl Phys 94(10):6849
34. Brabec C (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl
Phys Lett 80(7):1288
35. Hayakawa A (2007) High performance polythiophene/fullerene bulk-heterojunction solar cell
with a TiOx hole blocking layer. Appl Phys Lett 90(16):163517
36. Waldauf C (2006) Highly efficient inverted organic photovoltaics using solution based
titanium oxide as electron selective contact. Appl Phys Lett 89(23):233517
37. Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K (2008) Highly durable
inverted-type organic solar cell using amorphous titanium oxide as electron collection electrode
inserted between ITO and organic layer. Sol Energy Mater Sol Cells 92(11):1476-1482
38. Keis K, Magnusson E, Lindström H, Lindquist S-E, Hagfeldt A (2002) A 5% efficient
photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol Energy Mater
Sol Cells 73(1):51-58
39. Kyaw AK (2008) An inverted organic solar cell employing a sol-gel derived ZnO electron
selective layer and thermal evaporated MoO3 hole selective layer. Appl Phys Lett 93(22):221107
40. Schmidt H (2009) Efficient semitransparent inverted organic solar cells with indium tin oxide
top electrode. Appl Phys Lett 94(24):243302
41. Han S, Shin WS, Seo M, Gupta D, Moon S-J, Yoo S (2009) Improving performance of
organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on
transparent anodes. Org Electron 10(5):791-797
42. Jiang CY, Sun XW, Zhao DW, Kyaw AKK, Li YN (2010) Low work function metal
modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells
94(10):1618-1621
43. Tao C (2008) Performance improvement of inverted polymer solar cells with different top
electrodes by introducing a MoO 3 buffer layer. Appl Phys Lett 93(19):193307
44. Xie
F
(2011)
Improving
the
efficiency
of
polymer
solar
cells
by
incorporating
gold
nanoparticles into all polymer layers. Appl Phys Lett 99(15):153304
45. Peng B (2011) Performance improvement of polymer solar cells by using a solvent-treated
poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
buffer
layer.
Appl
Phys
Lett
98(24):243308
46. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells:
enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science
270(5243):1789-1791
47. Chen L, Tang Y, Fan X, Zhang C, Chu Z, Wang D, Zou D (2009) Improvement of the
efficiency of CuPc/C60-based photovoltaic cells using a multistepped structure. Org Electron
10(4):724-728
48. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger
AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching
100%. Nat Photon 3(5):297-302
Search WWH ::




Custom Search