Information Technology Reference
In-Depth Information
Furthermore, the added value of this approach over other classical Fourier-based
methods lies in its ability to further utilize time-domain characteristics of the WT
in a way comparable to the evoked potential applications, without making any com-
promise in the statistical validity of the results.
Acknowledgments This work was supported in part by the EU IST project BIOPATTERN, Con-
tact No: 508803. The Wavelet Transform and various significance testing parts were performed us-
ing software implementation based on the wavelet toolbox provided by C. Torrence and G. Compo,
available at the URL: http://paos.colorado.edu/research/wavelets/ .
References
1. Bianchi, A., Mainardi, L., Cerutti, S. Time-frequency analysis of biomedical signals. Trans
Inst Measur. and Contr 22 , 321-336 (2000)
2. Breakspear, M., Terry, J., Friston, K., Harris, A., Williams, L., Brown, K., Brennan, J., Gordon,
E. A disturbance of nonlinear interdependence in scalp EEG of subjects with first episode
schizophrenia. NeuroImage 20 , 466-478 (2003)
3. Bressler, S. The Handbook of Brain Theory and Neural Networks.
MIT Press, Cambridge
MA 412-415, (2002)
4. Bruns, A. Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different ap-
proaches? J Neurosci Methods 137 (2), 321-332 (2004)
5. Burrus, S., Gopinoth, R., Haitao, G. Introduction to Wavelets and Wavelet Transforms. Pren-
tice Hall Inc., Upper Saddle River, NJ (1998)
6. Chatfield, C. The Analysis of Time Series: An Introduction, 4th edn, p. 241. Chapman and
Hall, London (1989)
7. Dumermuth, G., Molinari, L. Spectral analysis of the EEG. Some fundamentals revisited and
some open problems. Neuropsychobiology 17 , 85-99 (1987)
8. Farge, M.: Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24 ,
395-457 (1992)
9. Kalayci, T., Ozdamar, O. Wavelet preprocessing for automated neural network detection of
EEG spikes. IEEE Eng Med Biol Mag 14 , 160-166 (1995)
10. Meyers, S., Kelly, B., O'Brien, J. An introduction to wavelet analysis in oceanography
and meteorology: With application to the dispersion of Yanai waves.
Mon Wea Rev 121 ,
2858-2866 (1993)
11. Micheloyannis, S., Sakkalis, V., Vourkas, M., Stam, C., Simos, P. Neural networks involved
in mathematical thinking: Evidence from linear and non-linear analysis of electroencephalo-
graphic activity. Neurosci Lett 373 , 212-217 (2005)
12. Raudys, S., Pikelis, V. On dimensionality, sample size, classification error and complexity
of classification algorithm in pattern recognition.
IEEE Trans Pattern Anal Machine Intell,
PAMI-2 (3), 242-252 (1980)
13. Sakkalis, V., Giurcaneanu, C., Xanthopoulos, P., Zervakis, M., Tsiaras, V., Yang, Y., Miche-
loyannis, S. Assessment of linear and nonlinear synchronization measures for analyzing EEG
in a mild epileptic paradigm. Accepted to be published in, 2008. IEEE Trans Inf Tech (2008).
DOI: 10.1109/TITB.2008.923141.
14. Sakkalis, V., Zervakis, M., Micheloyannis, S. Significant EEG features involved in mathemat-
ical reasoning: Evidence from wavelet analysis. Brain Topogr 19 (1-2), 53-60 (2006)
15. Simos, P., Papanikolaou, E., Sakkalis, E., Micheloyannis, S. Modulation of gamma-band spec-
tral power by cognitive task complexity. Brain Topogr 14 , 191-196 (2002)
16. Stoica, P., Moses, R. Introduction to Spectral Analysis. Prentice-Hall, Upper Saddle River, NJ
(1997). 24-26
Search WWH ::




Custom Search